Step |
Hyp |
Ref |
Expression |
1 |
|
0z |
|- 0 e. ZZ |
2 |
|
eltpg |
|- ( 0 e. ZZ -> ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
3 |
1 2
|
ax-mp |
|- ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) |
4 |
3
|
biimpri |
|- ( ( 0 = A \/ 0 = B \/ 0 = C ) -> 0 e. { A , B , C } ) |
5 |
|
tpssi |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> { A , B , C } C_ ZZ ) |
6 |
4 5
|
anim12ci |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( { A , B , C } C_ ZZ /\ 0 e. { A , B , C } ) ) |
7 |
|
lcmf0val |
|- ( ( { A , B , C } C_ ZZ /\ 0 e. { A , B , C } ) -> ( _lcm ` { A , B , C } ) = 0 ) |
8 |
6 7
|
syl |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = 0 ) |
9 |
|
0zd |
|- ( C e. ZZ -> 0 e. ZZ ) |
10 |
|
lcmcom |
|- ( ( 0 e. ZZ /\ C e. ZZ ) -> ( 0 lcm C ) = ( C lcm 0 ) ) |
11 |
9 10
|
mpancom |
|- ( C e. ZZ -> ( 0 lcm C ) = ( C lcm 0 ) ) |
12 |
|
lcm0val |
|- ( C e. ZZ -> ( C lcm 0 ) = 0 ) |
13 |
11 12
|
eqtrd |
|- ( C e. ZZ -> ( 0 lcm C ) = 0 ) |
14 |
13
|
eqcomd |
|- ( C e. ZZ -> 0 = ( 0 lcm C ) ) |
15 |
14
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( 0 lcm C ) ) |
16 |
15
|
adantl |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( 0 lcm C ) ) |
17 |
|
0zd |
|- ( B e. ZZ -> 0 e. ZZ ) |
18 |
|
lcmcom |
|- ( ( 0 e. ZZ /\ B e. ZZ ) -> ( 0 lcm B ) = ( B lcm 0 ) ) |
19 |
17 18
|
mpancom |
|- ( B e. ZZ -> ( 0 lcm B ) = ( B lcm 0 ) ) |
20 |
|
lcm0val |
|- ( B e. ZZ -> ( B lcm 0 ) = 0 ) |
21 |
19 20
|
eqtrd |
|- ( B e. ZZ -> ( 0 lcm B ) = 0 ) |
22 |
21
|
eqcomd |
|- ( B e. ZZ -> 0 = ( 0 lcm B ) ) |
23 |
22
|
3ad2ant2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( 0 lcm B ) ) |
24 |
23
|
adantl |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( 0 lcm B ) ) |
25 |
24
|
oveq1d |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = ( ( 0 lcm B ) lcm C ) ) |
26 |
|
oveq1 |
|- ( 0 = A -> ( 0 lcm B ) = ( A lcm B ) ) |
27 |
26
|
oveq1d |
|- ( 0 = A -> ( ( 0 lcm B ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
28 |
27
|
adantr |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( 0 lcm B ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
29 |
16 25 28
|
3eqtrd |
|- ( ( 0 = A /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
30 |
|
lcm0val |
|- ( A e. ZZ -> ( A lcm 0 ) = 0 ) |
31 |
30
|
eqcomd |
|- ( A e. ZZ -> 0 = ( A lcm 0 ) ) |
32 |
31
|
3ad2ant1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( A lcm 0 ) ) |
33 |
32
|
adantl |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( A lcm 0 ) ) |
34 |
33
|
oveq1d |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = ( ( A lcm 0 ) lcm C ) ) |
35 |
13
|
3ad2ant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 lcm C ) = 0 ) |
36 |
35
|
adantl |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( 0 lcm C ) = 0 ) |
37 |
|
oveq2 |
|- ( 0 = B -> ( A lcm 0 ) = ( A lcm B ) ) |
38 |
37
|
adantr |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm 0 ) = ( A lcm B ) ) |
39 |
38
|
oveq1d |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm 0 ) lcm C ) = ( ( A lcm B ) lcm C ) ) |
40 |
34 36 39
|
3eqtr3d |
|- ( ( 0 = B /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
41 |
|
lcmcl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A lcm B ) e. NN0 ) |
42 |
41
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A lcm B ) e. ZZ ) |
43 |
|
lcm0val |
|- ( ( A lcm B ) e. ZZ -> ( ( A lcm B ) lcm 0 ) = 0 ) |
44 |
43
|
eqcomd |
|- ( ( A lcm B ) e. ZZ -> 0 = ( ( A lcm B ) lcm 0 ) ) |
45 |
42 44
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> 0 = ( ( A lcm B ) lcm 0 ) ) |
46 |
45
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> 0 = ( ( A lcm B ) lcm 0 ) ) |
47 |
|
oveq2 |
|- ( 0 = C -> ( ( A lcm B ) lcm 0 ) = ( ( A lcm B ) lcm C ) ) |
48 |
46 47
|
sylan9eqr |
|- ( ( 0 = C /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
49 |
29 40 48
|
3jaoian |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 = ( ( A lcm B ) lcm C ) ) |
50 |
8 49
|
eqtrd |
|- ( ( ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |
51 |
42
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A lcm B ) e. ZZ ) |
52 |
|
simp3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. ZZ ) |
53 |
51 52
|
jca |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
54 |
53
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
55 |
|
dvdslcm |
|- ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
56 |
54 55
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
57 |
|
dvdslcm |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A || ( A lcm B ) /\ B || ( A lcm B ) ) ) |
58 |
57
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( A lcm B ) /\ B || ( A lcm B ) ) ) |
59 |
|
simp1 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> A e. ZZ ) |
60 |
|
lcmcl |
|- ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. NN0 ) |
61 |
53 60
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. NN0 ) |
62 |
61
|
nn0zd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) lcm C ) e. ZZ ) |
63 |
59 51 62
|
3jca |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
64 |
|
dvdstr |
|- ( ( A e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) -> ( ( A || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
65 |
63 64
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
66 |
65
|
expd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( A lcm B ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
67 |
66
|
com12 |
|- ( A || ( A lcm B ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
68 |
67
|
adantr |
|- ( ( A || ( A lcm B ) /\ B || ( A lcm B ) ) -> ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) ) |
69 |
58 68
|
mpcom |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) |
70 |
69
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> A || ( ( A lcm B ) lcm C ) ) ) |
71 |
70
|
com12 |
|- ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
72 |
71
|
adantr |
|- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A || ( ( A lcm B ) lcm C ) ) ) |
73 |
72
|
impcom |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> A || ( ( A lcm B ) lcm C ) ) |
74 |
|
simpr |
|- ( ( A || ( A lcm B ) /\ B || ( A lcm B ) ) -> B || ( A lcm B ) ) |
75 |
57 74
|
syl |
|- ( ( A e. ZZ /\ B e. ZZ ) -> B || ( A lcm B ) ) |
76 |
75
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B || ( A lcm B ) ) |
77 |
76
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( A lcm B ) ) |
78 |
|
simp2 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. ZZ ) |
79 |
78 51 62
|
3jca |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
80 |
79
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) ) |
81 |
|
dvdstr |
|- ( ( B e. ZZ /\ ( A lcm B ) e. ZZ /\ ( ( A lcm B ) lcm C ) e. ZZ ) -> ( ( B || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
82 |
80 81
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( B || ( A lcm B ) /\ ( A lcm B ) || ( ( A lcm B ) lcm C ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
83 |
77 82
|
mpand |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> B || ( ( A lcm B ) lcm C ) ) ) |
84 |
83
|
com12 |
|- ( ( A lcm B ) || ( ( A lcm B ) lcm C ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
85 |
84
|
adantr |
|- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> B || ( ( A lcm B ) lcm C ) ) ) |
86 |
85
|
impcom |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> B || ( ( A lcm B ) lcm C ) ) |
87 |
|
simpr |
|- ( ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) -> C || ( ( A lcm B ) lcm C ) ) |
88 |
87
|
adantl |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> C || ( ( A lcm B ) lcm C ) ) |
89 |
73 86 88
|
3jca |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ ( ( A lcm B ) || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) -> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
90 |
56 89
|
mpdan |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) |
91 |
|
breq1 |
|- ( m = A -> ( m || ( ( A lcm B ) lcm C ) <-> A || ( ( A lcm B ) lcm C ) ) ) |
92 |
|
breq1 |
|- ( m = B -> ( m || ( ( A lcm B ) lcm C ) <-> B || ( ( A lcm B ) lcm C ) ) ) |
93 |
|
breq1 |
|- ( m = C -> ( m || ( ( A lcm B ) lcm C ) <-> C || ( ( A lcm B ) lcm C ) ) ) |
94 |
91 92 93
|
raltpg |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) <-> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) ) |
95 |
94
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) <-> ( A || ( ( A lcm B ) lcm C ) /\ B || ( ( A lcm B ) lcm C ) /\ C || ( ( A lcm B ) lcm C ) ) ) ) |
96 |
90 95
|
mpbird |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) ) |
97 |
|
breq1 |
|- ( m = A -> ( m || k <-> A || k ) ) |
98 |
|
breq1 |
|- ( m = B -> ( m || k <-> B || k ) ) |
99 |
|
breq1 |
|- ( m = C -> ( m || k <-> C || k ) ) |
100 |
97 98 99
|
raltpg |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A. m e. { A , B , C } m || k <-> ( A || k /\ B || k /\ C || k ) ) ) |
101 |
100
|
ad2antlr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A. m e. { A , B , C } m || k <-> ( A || k /\ B || k /\ C || k ) ) ) |
102 |
|
simpr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> k e. NN ) |
103 |
51
|
ad2antlr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) e. ZZ ) |
104 |
52
|
ad2antlr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> C e. ZZ ) |
105 |
102 103 104
|
3jca |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
106 |
105
|
adantr |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) ) |
107 |
|
3ioran |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) <-> ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) ) |
108 |
|
eqcom |
|- ( 0 = A <-> A = 0 ) |
109 |
108
|
notbii |
|- ( -. 0 = A <-> -. A = 0 ) |
110 |
|
eqcom |
|- ( 0 = B <-> B = 0 ) |
111 |
110
|
notbii |
|- ( -. 0 = B <-> -. B = 0 ) |
112 |
109 111
|
anbi12i |
|- ( ( -. 0 = A /\ -. 0 = B ) <-> ( -. A = 0 /\ -. B = 0 ) ) |
113 |
112
|
biimpi |
|- ( ( -. 0 = A /\ -. 0 = B ) -> ( -. A = 0 /\ -. B = 0 ) ) |
114 |
|
ioran |
|- ( -. ( A = 0 \/ B = 0 ) <-> ( -. A = 0 /\ -. B = 0 ) ) |
115 |
113 114
|
sylibr |
|- ( ( -. 0 = A /\ -. 0 = B ) -> -. ( A = 0 \/ B = 0 ) ) |
116 |
115
|
3adant3 |
|- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
117 |
107 116
|
sylbi |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
118 |
|
id |
|- ( ( A e. ZZ /\ B e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
119 |
118
|
3adant3 |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A e. ZZ /\ B e. ZZ ) ) |
120 |
117 119
|
anim12ci |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) ) |
121 |
|
lcmn0cl |
|- ( ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) -> ( A lcm B ) e. NN ) |
122 |
120 121
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm B ) e. NN ) |
123 |
|
nnne0 |
|- ( ( A lcm B ) e. NN -> ( A lcm B ) =/= 0 ) |
124 |
123
|
neneqd |
|- ( ( A lcm B ) e. NN -> -. ( A lcm B ) = 0 ) |
125 |
122 124
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( A lcm B ) = 0 ) |
126 |
|
eqcom |
|- ( 0 = C <-> C = 0 ) |
127 |
126
|
notbii |
|- ( -. 0 = C <-> -. C = 0 ) |
128 |
127
|
biimpi |
|- ( -. 0 = C -> -. C = 0 ) |
129 |
128
|
3ad2ant3 |
|- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. C = 0 ) |
130 |
107 129
|
sylbi |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. C = 0 ) |
131 |
130
|
adantr |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. C = 0 ) |
132 |
125 131
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
133 |
132
|
adantr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
134 |
133
|
adantr |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
135 |
|
ioran |
|- ( -. ( ( A lcm B ) = 0 \/ C = 0 ) <-> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
136 |
134 135
|
sylibr |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> -. ( ( A lcm B ) = 0 \/ C = 0 ) ) |
137 |
119
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A e. ZZ /\ B e. ZZ ) ) |
138 |
|
nnz |
|- ( k e. NN -> k e. ZZ ) |
139 |
137 138
|
anim12ci |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. ZZ /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
140 |
|
3anass |
|- ( ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) <-> ( k e. ZZ /\ ( A e. ZZ /\ B e. ZZ ) ) ) |
141 |
139 140
|
sylibr |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) ) |
142 |
|
lcmdvds |
|- ( ( k e. ZZ /\ A e. ZZ /\ B e. ZZ ) -> ( ( A || k /\ B || k ) -> ( A lcm B ) || k ) ) |
143 |
141 142
|
syl |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( ( A || k /\ B || k ) -> ( A lcm B ) || k ) ) |
144 |
143
|
com12 |
|- ( ( A || k /\ B || k ) -> ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) || k ) ) |
145 |
144
|
3adant3 |
|- ( ( A || k /\ B || k /\ C || k ) -> ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A lcm B ) || k ) ) |
146 |
145
|
impcom |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( A lcm B ) || k ) |
147 |
|
simp3 |
|- ( ( A || k /\ B || k /\ C || k ) -> C || k ) |
148 |
147
|
adantl |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> C || k ) |
149 |
|
lcmledvds |
|- ( ( ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) -> ( ( ( A lcm B ) || k /\ C || k ) -> ( ( A lcm B ) lcm C ) <_ k ) ) |
150 |
149
|
imp |
|- ( ( ( ( k e. NN /\ ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) /\ ( ( A lcm B ) || k /\ C || k ) ) -> ( ( A lcm B ) lcm C ) <_ k ) |
151 |
106 136 146 148 150
|
syl22anc |
|- ( ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) /\ ( A || k /\ B || k /\ C || k ) ) -> ( ( A lcm B ) lcm C ) <_ k ) |
152 |
151
|
ex |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( ( A || k /\ B || k /\ C || k ) -> ( ( A lcm B ) lcm C ) <_ k ) ) |
153 |
101 152
|
sylbid |
|- ( ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) /\ k e. NN ) -> ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) |
154 |
153
|
ralrimiva |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) |
155 |
96 154
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) |
156 |
109
|
biimpi |
|- ( -. 0 = A -> -. A = 0 ) |
157 |
111
|
biimpi |
|- ( -. 0 = B -> -. B = 0 ) |
158 |
156 157
|
anim12i |
|- ( ( -. 0 = A /\ -. 0 = B ) -> ( -. A = 0 /\ -. B = 0 ) ) |
159 |
158 114
|
sylibr |
|- ( ( -. 0 = A /\ -. 0 = B ) -> -. ( A = 0 \/ B = 0 ) ) |
160 |
159
|
3adant3 |
|- ( ( -. 0 = A /\ -. 0 = B /\ -. 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
161 |
107 160
|
sylbi |
|- ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. ( A = 0 \/ B = 0 ) ) |
162 |
161 119
|
anim12ci |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A e. ZZ /\ B e. ZZ ) /\ -. ( A = 0 \/ B = 0 ) ) ) |
163 |
162 121
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( A lcm B ) e. NN ) |
164 |
163 124
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( A lcm B ) = 0 ) |
165 |
164 131
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( -. ( A lcm B ) = 0 /\ -. C = 0 ) ) |
166 |
165 135
|
sylibr |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. ( ( A lcm B ) = 0 \/ C = 0 ) ) |
167 |
54 166
|
jca |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) ) |
168 |
|
lcmn0cl |
|- ( ( ( ( A lcm B ) e. ZZ /\ C e. ZZ ) /\ -. ( ( A lcm B ) = 0 \/ C = 0 ) ) -> ( ( A lcm B ) lcm C ) e. NN ) |
169 |
167 168
|
syl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) lcm C ) e. NN ) |
170 |
5
|
adantl |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> { A , B , C } C_ ZZ ) |
171 |
|
tpfi |
|- { A , B , C } e. Fin |
172 |
171
|
a1i |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> { A , B , C } e. Fin ) |
173 |
3
|
a1i |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 e. { A , B , C } <-> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
174 |
173
|
biimpd |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( 0 e. { A , B , C } -> ( 0 = A \/ 0 = B \/ 0 = C ) ) ) |
175 |
174
|
con3d |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( -. ( 0 = A \/ 0 = B \/ 0 = C ) -> -. 0 e. { A , B , C } ) ) |
176 |
175
|
impcom |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> -. 0 e. { A , B , C } ) |
177 |
|
df-nel |
|- ( 0 e/ { A , B , C } <-> -. 0 e. { A , B , C } ) |
178 |
176 177
|
sylibr |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> 0 e/ { A , B , C } ) |
179 |
|
lcmf |
|- ( ( ( ( A lcm B ) lcm C ) e. NN /\ ( { A , B , C } C_ ZZ /\ { A , B , C } e. Fin /\ 0 e/ { A , B , C } ) ) -> ( ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) <-> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) ) |
180 |
169 170 172 178 179
|
syl13anc |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) <-> ( A. m e. { A , B , C } m || ( ( A lcm B ) lcm C ) /\ A. k e. NN ( A. m e. { A , B , C } m || k -> ( ( A lcm B ) lcm C ) <_ k ) ) ) ) |
181 |
155 180
|
mpbird |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( ( A lcm B ) lcm C ) = ( _lcm ` { A , B , C } ) ) |
182 |
181
|
eqcomd |
|- ( ( -. ( 0 = A \/ 0 = B \/ 0 = C ) /\ ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |
183 |
50 182
|
pm2.61ian |
|- ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( _lcm ` { A , B , C } ) = ( ( A lcm B ) lcm C ) ) |