Description: The product of two numbers' least common multiple and greatest common divisor is the absolute value of the product of the two numbers. In particular, that absolute valueis the least common multiple of two coprime numbers, for which ( M gcd N ) = 1 .
Multiple methods exist for proving this, and it is often proven either as a consequence of the fundamental theorem of arithmetic 1arith or of Bézout's identity bezout ; see e.g., https://proofwiki.org/wiki/Product_of_GCD_and_LCM and https://math.stackexchange.com/a/470827 . This proof uses the latter to first confirm it for positive integers M and N (the "Second Proof" in the above Stack Exchange page), then shows that implies it for all nonzero integer inputs, then finally uses lcm0val to show it applies when either or both inputs are zero. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmgcd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | gcdcl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) | |
| 2 | 1 | nn0cnd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. CC ) | 
| 3 | 2 | mul02d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 x. ( M gcd N ) ) = 0 ) | 
| 4 | 0z | |- 0 e. ZZ | |
| 5 | lcmcom | |- ( ( N e. ZZ /\ 0 e. ZZ ) -> ( N lcm 0 ) = ( 0 lcm N ) ) | |
| 6 | 4 5 | mpan2 | |- ( N e. ZZ -> ( N lcm 0 ) = ( 0 lcm N ) ) | 
| 7 | lcm0val | |- ( N e. ZZ -> ( N lcm 0 ) = 0 ) | |
| 8 | 6 7 | eqtr3d | |- ( N e. ZZ -> ( 0 lcm N ) = 0 ) | 
| 9 | 8 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 lcm N ) = 0 ) | 
| 10 | 9 | oveq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( 0 lcm N ) x. ( M gcd N ) ) = ( 0 x. ( M gcd N ) ) ) | 
| 11 | zcn | |- ( N e. ZZ -> N e. CC ) | |
| 12 | 11 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> N e. CC ) | 
| 13 | 12 | mul02d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( 0 x. N ) = 0 ) | 
| 14 | 13 | abs00bd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( 0 x. N ) ) = 0 ) | 
| 15 | 3 10 14 | 3eqtr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( 0 lcm N ) x. ( M gcd N ) ) = ( abs ` ( 0 x. N ) ) ) | 
| 16 | 15 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( 0 lcm N ) x. ( M gcd N ) ) = ( abs ` ( 0 x. N ) ) ) | 
| 17 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> M = 0 ) | |
| 18 | 17 | oveq1d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( 0 lcm N ) ) | 
| 19 | 18 | oveq1d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( ( 0 lcm N ) x. ( M gcd N ) ) ) | 
| 20 | 17 | oveq1d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M x. N ) = ( 0 x. N ) ) | 
| 21 | 20 | fveq2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( abs ` ( M x. N ) ) = ( abs ` ( 0 x. N ) ) ) | 
| 22 | 16 19 21 | 3eqtr4d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
| 23 | lcm0val | |- ( M e. ZZ -> ( M lcm 0 ) = 0 ) | |
| 24 | 23 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm 0 ) = 0 ) | 
| 25 | 24 | oveq1d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm 0 ) x. ( M gcd N ) ) = ( 0 x. ( M gcd N ) ) ) | 
| 26 | zcn | |- ( M e. ZZ -> M e. CC ) | |
| 27 | 26 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> M e. CC ) | 
| 28 | 27 | mul01d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( M x. 0 ) = 0 ) | 
| 29 | 28 | abs00bd | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( M x. 0 ) ) = 0 ) | 
| 30 | 3 25 29 | 3eqtr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm 0 ) x. ( M gcd N ) ) = ( abs ` ( M x. 0 ) ) ) | 
| 31 | 30 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( M lcm 0 ) x. ( M gcd N ) ) = ( abs ` ( M x. 0 ) ) ) | 
| 32 | simpr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> N = 0 ) | |
| 33 | 32 | oveq2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = ( M lcm 0 ) ) | 
| 34 | 33 | oveq1d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( ( M lcm 0 ) x. ( M gcd N ) ) ) | 
| 35 | 32 | oveq2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M x. N ) = ( M x. 0 ) ) | 
| 36 | 35 | fveq2d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( abs ` ( M x. N ) ) = ( abs ` ( M x. 0 ) ) ) | 
| 37 | 31 34 36 | 3eqtr4d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
| 38 | 22 37 | jaodan | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
| 39 | neanior | |- ( ( M =/= 0 /\ N =/= 0 ) <-> -. ( M = 0 \/ N = 0 ) ) | |
| 40 | nnabscl | |- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. NN ) | |
| 41 | nnabscl | |- ( ( N e. ZZ /\ N =/= 0 ) -> ( abs ` N ) e. NN ) | |
| 42 | 40 41 | anim12i | |- ( ( ( M e. ZZ /\ M =/= 0 ) /\ ( N e. ZZ /\ N =/= 0 ) ) -> ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) ) | 
| 43 | 42 | an4s | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M =/= 0 /\ N =/= 0 ) ) -> ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) ) | 
| 44 | 39 43 | sylan2br | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) ) | 
| 45 | lcmgcdlem | |- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) /\ ( ( 0 e. NN /\ ( ( abs ` M ) || 0 /\ ( abs ` N ) || 0 ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) || 0 ) ) ) | |
| 46 | 45 | simpld | |- ( ( ( abs ` M ) e. NN /\ ( abs ` N ) e. NN ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) ) | 
| 47 | 44 46 | syl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) ) | 
| 48 | lcmabs | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) | |
| 49 | gcdabs | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) | |
| 50 | 48 49 | oveq12d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( ( M lcm N ) x. ( M gcd N ) ) ) | 
| 51 | 50 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) x. ( ( abs ` M ) gcd ( abs ` N ) ) ) = ( ( M lcm N ) x. ( M gcd N ) ) ) | 
| 52 | absidm | |- ( M e. CC -> ( abs ` ( abs ` M ) ) = ( abs ` M ) ) | |
| 53 | absidm | |- ( N e. CC -> ( abs ` ( abs ` N ) ) = ( abs ` N ) ) | |
| 54 | 52 53 | oveqan12d | |- ( ( M e. CC /\ N e. CC ) -> ( ( abs ` ( abs ` M ) ) x. ( abs ` ( abs ` N ) ) ) = ( ( abs ` M ) x. ( abs ` N ) ) ) | 
| 55 | 26 11 54 | syl2an | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` ( abs ` M ) ) x. ( abs ` ( abs ` N ) ) ) = ( ( abs ` M ) x. ( abs ` N ) ) ) | 
| 56 | nn0abscl | |- ( M e. ZZ -> ( abs ` M ) e. NN0 ) | |
| 57 | 56 | nn0cnd | |- ( M e. ZZ -> ( abs ` M ) e. CC ) | 
| 58 | 57 | adantr | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` M ) e. CC ) | 
| 59 | nn0abscl | |- ( N e. ZZ -> ( abs ` N ) e. NN0 ) | |
| 60 | 59 | nn0cnd | |- ( N e. ZZ -> ( abs ` N ) e. CC ) | 
| 61 | 60 | adantl | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` N ) e. CC ) | 
| 62 | 58 61 | absmuld | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) = ( ( abs ` ( abs ` M ) ) x. ( abs ` ( abs ` N ) ) ) ) | 
| 63 | 27 12 | absmuld | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( M x. N ) ) = ( ( abs ` M ) x. ( abs ` N ) ) ) | 
| 64 | 55 62 63 | 3eqtr4d | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) = ( abs ` ( M x. N ) ) ) | 
| 65 | 64 | adantr | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( abs ` ( ( abs ` M ) x. ( abs ` N ) ) ) = ( abs ` ( M x. N ) ) ) | 
| 66 | 47 51 65 | 3eqtr3d | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
| 67 | 38 66 | pm2.61dan | |- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |