| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dvdslcm |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 2 | 1 | simpld |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> M || ( M lcm N ) ) | 
						
							| 3 | 2 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> M || ( M lcm N ) ) | 
						
							| 4 |  | gcddvds |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) | 
						
							| 5 | 4 | simprd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) | 
						
							| 6 |  | breq1 |  |-  ( ( M lcm N ) = ( M gcd N ) -> ( ( M lcm N ) || N <-> ( M gcd N ) || N ) ) | 
						
							| 7 | 5 6 | syl5ibrcom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) -> ( M lcm N ) || N ) ) | 
						
							| 8 | 7 | imp |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M lcm N ) || N ) | 
						
							| 9 |  | lcmcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) | 
						
							| 10 | 9 | nn0zd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. ZZ ) | 
						
							| 11 |  | dvdstr |  |-  ( ( M e. ZZ /\ ( M lcm N ) e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) | 
						
							| 12 | 10 11 | syl3an2 |  |-  ( ( M e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) | 
						
							| 13 | 12 | 3com12 |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) | 
						
							| 14 | 13 | 3expb |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) | 
						
							| 15 | 14 | anidms |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( M || ( M lcm N ) /\ ( M lcm N ) || N ) -> M || N ) ) | 
						
							| 17 | 3 8 16 | mp2and |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> M || N ) | 
						
							| 18 |  | absdvdsb |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || N ) ) | 
						
							| 19 |  | zabscl |  |-  ( M e. ZZ -> ( abs ` M ) e. ZZ ) | 
						
							| 20 |  | dvdsabsb |  |-  ( ( ( abs ` M ) e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) | 
						
							| 21 | 19 20 | sylan |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) || N <-> ( abs ` M ) || ( abs ` N ) ) ) | 
						
							| 22 | 18 21 | bitrd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) ) | 
						
							| 23 | 22 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M || N <-> ( abs ` M ) || ( abs ` N ) ) ) | 
						
							| 24 | 17 23 | mpbid |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` M ) || ( abs ` N ) ) | 
						
							| 25 | 1 | simprd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> N || ( M lcm N ) ) | 
						
							| 26 | 25 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> N || ( M lcm N ) ) | 
						
							| 27 | 4 | simpld |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) | 
						
							| 28 |  | breq1 |  |-  ( ( M lcm N ) = ( M gcd N ) -> ( ( M lcm N ) || M <-> ( M gcd N ) || M ) ) | 
						
							| 29 | 27 28 | syl5ibrcom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) -> ( M lcm N ) || M ) ) | 
						
							| 30 | 29 | imp |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( M lcm N ) || M ) | 
						
							| 31 |  | dvdstr |  |-  ( ( N e. ZZ /\ ( M lcm N ) e. ZZ /\ M e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) | 
						
							| 32 | 10 31 | syl3an2 |  |-  ( ( N e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) | 
						
							| 33 | 32 | 3coml |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) | 
						
							| 34 | 33 | 3expb |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) | 
						
							| 35 | 34 | anidms |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) | 
						
							| 36 | 35 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( N || ( M lcm N ) /\ ( M lcm N ) || M ) -> N || M ) ) | 
						
							| 37 | 26 30 36 | mp2and |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> N || M ) | 
						
							| 38 |  | absdvdsb |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N || M <-> ( abs ` N ) || M ) ) | 
						
							| 39 |  | zabscl |  |-  ( N e. ZZ -> ( abs ` N ) e. ZZ ) | 
						
							| 40 |  | dvdsabsb |  |-  ( ( ( abs ` N ) e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) || M <-> ( abs ` N ) || ( abs ` M ) ) ) | 
						
							| 41 | 39 40 | sylan |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( ( abs ` N ) || M <-> ( abs ` N ) || ( abs ` M ) ) ) | 
						
							| 42 | 38 41 | bitrd |  |-  ( ( N e. ZZ /\ M e. ZZ ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) | 
						
							| 43 | 42 | ancoms |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( N || M <-> ( abs ` N ) || ( abs ` M ) ) ) | 
						
							| 45 | 37 44 | mpbid |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` N ) || ( abs ` M ) ) | 
						
							| 46 |  | nn0abscl |  |-  ( M e. ZZ -> ( abs ` M ) e. NN0 ) | 
						
							| 47 |  | nn0abscl |  |-  ( N e. ZZ -> ( abs ` N ) e. NN0 ) | 
						
							| 48 | 46 47 | anim12i |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) e. NN0 /\ ( abs ` N ) e. NN0 ) ) | 
						
							| 49 |  | dvdseq |  |-  ( ( ( ( abs ` M ) e. NN0 /\ ( abs ` N ) e. NN0 ) /\ ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) ) -> ( abs ` M ) = ( abs ` N ) ) | 
						
							| 50 | 48 49 | sylan |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) ) -> ( abs ` M ) = ( abs ` N ) ) | 
						
							| 51 | 50 | ex |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) -> ( abs ` M ) = ( abs ` N ) ) ) | 
						
							| 52 | 51 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( ( ( abs ` M ) || ( abs ` N ) /\ ( abs ` N ) || ( abs ` M ) ) -> ( abs ` M ) = ( abs ` N ) ) ) | 
						
							| 53 | 24 45 52 | mp2and |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M lcm N ) = ( M gcd N ) ) -> ( abs ` M ) = ( abs ` N ) ) | 
						
							| 54 |  | lcmid |  |-  ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) | 
						
							| 55 | 19 54 | syl |  |-  ( M e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) | 
						
							| 56 |  | gcdid |  |-  ( ( abs ` M ) e. ZZ -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) | 
						
							| 57 | 19 56 | syl |  |-  ( M e. ZZ -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( abs ` ( abs ` M ) ) ) | 
						
							| 58 | 55 57 | eqtr4d |  |-  ( M e. ZZ -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` M ) ) ) | 
						
							| 59 |  | oveq2 |  |-  ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) lcm ( abs ` N ) ) ) | 
						
							| 60 |  | oveq2 |  |-  ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) gcd ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) | 
						
							| 61 | 59 60 | eqeq12d |  |-  ( ( abs ` M ) = ( abs ` N ) -> ( ( ( abs ` M ) lcm ( abs ` M ) ) = ( ( abs ` M ) gcd ( abs ` M ) ) <-> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) ) | 
						
							| 62 | 58 61 | syl5ibcom |  |-  ( M e. ZZ -> ( ( abs ` M ) = ( abs ` N ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) ) | 
						
							| 63 | 62 | imp |  |-  ( ( M e. ZZ /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) | 
						
							| 64 | 63 | adantlr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) ) | 
						
							| 65 |  | lcmabs |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) lcm ( abs ` N ) ) = ( M lcm N ) ) | 
						
							| 66 |  | gcdabs |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( abs ` M ) gcd ( abs ` N ) ) = ( M gcd N ) ) | 
						
							| 67 | 65 66 | eqeq12d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) <-> ( M lcm N ) = ( M gcd N ) ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( ( ( abs ` M ) lcm ( abs ` N ) ) = ( ( abs ` M ) gcd ( abs ` N ) ) <-> ( M lcm N ) = ( M gcd N ) ) ) | 
						
							| 69 | 64 68 | mpbid |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( abs ` M ) = ( abs ` N ) ) -> ( M lcm N ) = ( M gcd N ) ) | 
						
							| 70 | 53 69 | impbida |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M gcd N ) <-> ( abs ` M ) = ( abs ` N ) ) ) |