| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnmulcl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN ) | 
						
							| 2 | 1 | nnred |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. RR ) | 
						
							| 3 |  | nnz |  |-  ( M e. NN -> M e. ZZ ) | 
						
							| 4 | 3 | adantr |  |-  ( ( M e. NN /\ N e. NN ) -> M e. ZZ ) | 
						
							| 5 | 4 | zred |  |-  ( ( M e. NN /\ N e. NN ) -> M e. RR ) | 
						
							| 6 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 7 | 6 | adantl |  |-  ( ( M e. NN /\ N e. NN ) -> N e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( ( M e. NN /\ N e. NN ) -> N e. RR ) | 
						
							| 9 |  | 0red |  |-  ( M e. NN -> 0 e. RR ) | 
						
							| 10 |  | nnre |  |-  ( M e. NN -> M e. RR ) | 
						
							| 11 |  | nngt0 |  |-  ( M e. NN -> 0 < M ) | 
						
							| 12 | 9 10 11 | ltled |  |-  ( M e. NN -> 0 <_ M ) | 
						
							| 13 | 12 | adantr |  |-  ( ( M e. NN /\ N e. NN ) -> 0 <_ M ) | 
						
							| 14 |  | 0red |  |-  ( N e. NN -> 0 e. RR ) | 
						
							| 15 |  | nnre |  |-  ( N e. NN -> N e. RR ) | 
						
							| 16 |  | nngt0 |  |-  ( N e. NN -> 0 < N ) | 
						
							| 17 | 14 15 16 | ltled |  |-  ( N e. NN -> 0 <_ N ) | 
						
							| 18 | 17 | adantl |  |-  ( ( M e. NN /\ N e. NN ) -> 0 <_ N ) | 
						
							| 19 | 5 8 13 18 | mulge0d |  |-  ( ( M e. NN /\ N e. NN ) -> 0 <_ ( M x. N ) ) | 
						
							| 20 | 2 19 | absidd |  |-  ( ( M e. NN /\ N e. NN ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) | 
						
							| 21 | 3 6 | anim12i |  |-  ( ( M e. NN /\ N e. NN ) -> ( M e. ZZ /\ N e. ZZ ) ) | 
						
							| 22 |  | nnne0 |  |-  ( M e. NN -> M =/= 0 ) | 
						
							| 23 | 22 | neneqd |  |-  ( M e. NN -> -. M = 0 ) | 
						
							| 24 |  | nnne0 |  |-  ( N e. NN -> N =/= 0 ) | 
						
							| 25 | 24 | neneqd |  |-  ( N e. NN -> -. N = 0 ) | 
						
							| 26 | 23 25 | anim12i |  |-  ( ( M e. NN /\ N e. NN ) -> ( -. M = 0 /\ -. N = 0 ) ) | 
						
							| 27 |  | ioran |  |-  ( -. ( M = 0 \/ N = 0 ) <-> ( -. M = 0 /\ -. N = 0 ) ) | 
						
							| 28 | 26 27 | sylibr |  |-  ( ( M e. NN /\ N e. NN ) -> -. ( M = 0 \/ N = 0 ) ) | 
						
							| 29 |  | lcmn0val |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { x e. NN | ( M || x /\ N || x ) } , RR , < ) ) | 
						
							| 30 | 21 28 29 | syl2anc |  |-  ( ( M e. NN /\ N e. NN ) -> ( M lcm N ) = inf ( { x e. NN | ( M || x /\ N || x ) } , RR , < ) ) | 
						
							| 31 |  | ltso |  |-  < Or RR | 
						
							| 32 | 31 | a1i |  |-  ( ( M e. NN /\ N e. NN ) -> < Or RR ) | 
						
							| 33 |  | gcddvds |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M /\ ( M gcd N ) || N ) ) | 
						
							| 34 | 33 | simpld |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || M ) | 
						
							| 35 |  | gcdcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. NN0 ) | 
						
							| 36 | 35 | nn0zd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) e. ZZ ) | 
						
							| 37 |  | dvdsmultr1 |  |-  ( ( ( M gcd N ) e. ZZ /\ M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M -> ( M gcd N ) || ( M x. N ) ) ) | 
						
							| 38 | 37 | 3expb |  |-  ( ( ( M gcd N ) e. ZZ /\ ( M e. ZZ /\ N e. ZZ ) ) -> ( ( M gcd N ) || M -> ( M gcd N ) || ( M x. N ) ) ) | 
						
							| 39 | 36 38 | mpancom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M gcd N ) || M -> ( M gcd N ) || ( M x. N ) ) ) | 
						
							| 40 | 34 39 | mpd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || ( M x. N ) ) | 
						
							| 41 | 21 40 | syl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || ( M x. N ) ) | 
						
							| 42 |  | gcdnncl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. NN ) | 
						
							| 43 |  | nndivdvds |  |-  ( ( ( M x. N ) e. NN /\ ( M gcd N ) e. NN ) -> ( ( M gcd N ) || ( M x. N ) <-> ( ( M x. N ) / ( M gcd N ) ) e. NN ) ) | 
						
							| 44 | 1 42 43 | syl2anc |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || ( M x. N ) <-> ( ( M x. N ) / ( M gcd N ) ) e. NN ) ) | 
						
							| 45 | 41 44 | mpbid |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. NN ) | 
						
							| 46 | 45 | nnred |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. RR ) | 
						
							| 47 |  | breq2 |  |-  ( x = ( ( M x. N ) / ( M gcd N ) ) -> ( M || x <-> M || ( ( M x. N ) / ( M gcd N ) ) ) ) | 
						
							| 48 |  | breq2 |  |-  ( x = ( ( M x. N ) / ( M gcd N ) ) -> ( N || x <-> N || ( ( M x. N ) / ( M gcd N ) ) ) ) | 
						
							| 49 | 47 48 | anbi12d |  |-  ( x = ( ( M x. N ) / ( M gcd N ) ) -> ( ( M || x /\ N || x ) <-> ( M || ( ( M x. N ) / ( M gcd N ) ) /\ N || ( ( M x. N ) / ( M gcd N ) ) ) ) ) | 
						
							| 50 | 33 | simprd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M gcd N ) || N ) | 
						
							| 51 | 21 50 | syl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || N ) | 
						
							| 52 | 21 36 | syl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. ZZ ) | 
						
							| 53 | 42 | nnne0d |  |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) =/= 0 ) | 
						
							| 54 |  | dvdsval2 |  |-  ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ N e. ZZ ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) | 
						
							| 55 | 52 53 7 54 | syl3anc |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || N <-> ( N / ( M gcd N ) ) e. ZZ ) ) | 
						
							| 56 | 51 55 | mpbid |  |-  ( ( M e. NN /\ N e. NN ) -> ( N / ( M gcd N ) ) e. ZZ ) | 
						
							| 57 |  | dvdsmul1 |  |-  ( ( M e. ZZ /\ ( N / ( M gcd N ) ) e. ZZ ) -> M || ( M x. ( N / ( M gcd N ) ) ) ) | 
						
							| 58 | 4 56 57 | syl2anc |  |-  ( ( M e. NN /\ N e. NN ) -> M || ( M x. ( N / ( M gcd N ) ) ) ) | 
						
							| 59 |  | nncn |  |-  ( M e. NN -> M e. CC ) | 
						
							| 60 | 59 | adantr |  |-  ( ( M e. NN /\ N e. NN ) -> M e. CC ) | 
						
							| 61 |  | nncn |  |-  ( N e. NN -> N e. CC ) | 
						
							| 62 | 61 | adantl |  |-  ( ( M e. NN /\ N e. NN ) -> N e. CC ) | 
						
							| 63 | 42 | nncnd |  |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) e. CC ) | 
						
							| 64 | 60 62 63 53 | divassd |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( M x. ( N / ( M gcd N ) ) ) ) | 
						
							| 65 | 58 64 | breqtrrd |  |-  ( ( M e. NN /\ N e. NN ) -> M || ( ( M x. N ) / ( M gcd N ) ) ) | 
						
							| 66 | 21 34 | syl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M gcd N ) || M ) | 
						
							| 67 |  | dvdsval2 |  |-  ( ( ( M gcd N ) e. ZZ /\ ( M gcd N ) =/= 0 /\ M e. ZZ ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) | 
						
							| 68 | 52 53 4 67 | syl3anc |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M gcd N ) || M <-> ( M / ( M gcd N ) ) e. ZZ ) ) | 
						
							| 69 | 66 68 | mpbid |  |-  ( ( M e. NN /\ N e. NN ) -> ( M / ( M gcd N ) ) e. ZZ ) | 
						
							| 70 |  | dvdsmul1 |  |-  ( ( N e. ZZ /\ ( M / ( M gcd N ) ) e. ZZ ) -> N || ( N x. ( M / ( M gcd N ) ) ) ) | 
						
							| 71 | 7 69 70 | syl2anc |  |-  ( ( M e. NN /\ N e. NN ) -> N || ( N x. ( M / ( M gcd N ) ) ) ) | 
						
							| 72 | 60 62 | mulcomd |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) = ( N x. M ) ) | 
						
							| 73 | 72 | oveq1d |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( ( N x. M ) / ( M gcd N ) ) ) | 
						
							| 74 | 62 60 63 53 | divassd |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( N x. M ) / ( M gcd N ) ) = ( N x. ( M / ( M gcd N ) ) ) ) | 
						
							| 75 | 73 74 | eqtrd |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( N x. ( M / ( M gcd N ) ) ) ) | 
						
							| 76 | 71 75 | breqtrrd |  |-  ( ( M e. NN /\ N e. NN ) -> N || ( ( M x. N ) / ( M gcd N ) ) ) | 
						
							| 77 | 65 76 | jca |  |-  ( ( M e. NN /\ N e. NN ) -> ( M || ( ( M x. N ) / ( M gcd N ) ) /\ N || ( ( M x. N ) / ( M gcd N ) ) ) ) | 
						
							| 78 | 49 45 77 | elrabd |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. { x e. NN | ( M || x /\ N || x ) } ) | 
						
							| 79 | 46 | adantr |  |-  ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> ( ( M x. N ) / ( M gcd N ) ) e. RR ) | 
						
							| 80 |  | elrabi |  |-  ( n e. { x e. NN | ( M || x /\ N || x ) } -> n e. NN ) | 
						
							| 81 | 80 | nnred |  |-  ( n e. { x e. NN | ( M || x /\ N || x ) } -> n e. RR ) | 
						
							| 82 | 81 | adantl |  |-  ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> n e. RR ) | 
						
							| 83 |  | breq2 |  |-  ( x = n -> ( M || x <-> M || n ) ) | 
						
							| 84 |  | breq2 |  |-  ( x = n -> ( N || x <-> N || n ) ) | 
						
							| 85 | 83 84 | anbi12d |  |-  ( x = n -> ( ( M || x /\ N || x ) <-> ( M || n /\ N || n ) ) ) | 
						
							| 86 | 85 | elrab |  |-  ( n e. { x e. NN | ( M || x /\ N || x ) } <-> ( n e. NN /\ ( M || n /\ N || n ) ) ) | 
						
							| 87 |  | bezout |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) | 
						
							| 88 | 21 87 | syl |  |-  ( ( M e. NN /\ N e. NN ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) | 
						
							| 89 | 88 | adantr |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) | 
						
							| 90 |  | nncn |  |-  ( n e. NN -> n e. CC ) | 
						
							| 91 | 90 | ad2antlr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> n e. CC ) | 
						
							| 92 | 1 | nncnd |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. CC ) | 
						
							| 93 | 92 | ad2antrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. N ) e. CC ) | 
						
							| 94 | 63 | ad2antrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M gcd N ) e. CC ) | 
						
							| 95 | 60 | ad2antrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M e. CC ) | 
						
							| 96 | 61 | ad3antlr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. CC ) | 
						
							| 97 | 22 | ad3antrrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M =/= 0 ) | 
						
							| 98 | 24 | ad3antlr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N =/= 0 ) | 
						
							| 99 | 95 96 97 98 | mulne0d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. N ) =/= 0 ) | 
						
							| 100 | 53 | ad2antrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M gcd N ) =/= 0 ) | 
						
							| 101 | 91 93 94 99 100 | divdiv2d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( n x. ( M gcd N ) ) / ( M x. N ) ) ) | 
						
							| 102 | 101 | adantr |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( n x. ( M gcd N ) ) / ( M x. N ) ) ) | 
						
							| 103 |  | oveq2 |  |-  ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( n x. ( M gcd N ) ) = ( n x. ( ( M x. x ) + ( N x. y ) ) ) ) | 
						
							| 104 | 103 | oveq1d |  |-  ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( ( n x. ( M gcd N ) ) / ( M x. N ) ) = ( ( n x. ( ( M x. x ) + ( N x. y ) ) ) / ( M x. N ) ) ) | 
						
							| 105 |  | zcn |  |-  ( x e. ZZ -> x e. CC ) | 
						
							| 106 | 105 | ad2antrl |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. CC ) | 
						
							| 107 | 95 106 | mulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. x ) e. CC ) | 
						
							| 108 |  | zcn |  |-  ( y e. ZZ -> y e. CC ) | 
						
							| 109 | 108 | ad2antll |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. CC ) | 
						
							| 110 | 96 109 | mulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N x. y ) e. CC ) | 
						
							| 111 | 91 107 110 | adddid |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( ( M x. x ) + ( N x. y ) ) ) = ( ( n x. ( M x. x ) ) + ( n x. ( N x. y ) ) ) ) | 
						
							| 112 | 111 | oveq1d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( ( M x. x ) + ( N x. y ) ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) + ( n x. ( N x. y ) ) ) / ( M x. N ) ) ) | 
						
							| 113 | 91 107 | mulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( M x. x ) ) e. CC ) | 
						
							| 114 | 91 110 | mulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( N x. y ) ) e. CC ) | 
						
							| 115 | 113 114 93 99 | divdird |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( n x. ( M x. x ) ) + ( n x. ( N x. y ) ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) ) | 
						
							| 116 | 112 115 | eqtrd |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( ( M x. x ) + ( N x. y ) ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) ) | 
						
							| 117 | 104 116 | sylan9eqr |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( n x. ( M gcd N ) ) / ( M x. N ) ) = ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) ) | 
						
							| 118 | 91 95 106 | mul12d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( M x. x ) ) = ( M x. ( n x. x ) ) ) | 
						
							| 119 | 118 | oveq1d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( M x. x ) ) / ( M x. N ) ) = ( ( M x. ( n x. x ) ) / ( M x. N ) ) ) | 
						
							| 120 | 91 106 | mulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. x ) e. CC ) | 
						
							| 121 | 120 96 95 98 97 | divcan5d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M x. ( n x. x ) ) / ( M x. N ) ) = ( ( n x. x ) / N ) ) | 
						
							| 122 | 119 121 | eqtrd |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( M x. x ) ) / ( M x. N ) ) = ( ( n x. x ) / N ) ) | 
						
							| 123 | 91 96 109 | mul12d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. ( N x. y ) ) = ( N x. ( n x. y ) ) ) | 
						
							| 124 | 123 | oveq1d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( N x. y ) ) / ( M x. N ) ) = ( ( N x. ( n x. y ) ) / ( M x. N ) ) ) | 
						
							| 125 | 72 | ad2antrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M x. N ) = ( N x. M ) ) | 
						
							| 126 | 125 | oveq2d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. ( n x. y ) ) / ( M x. N ) ) = ( ( N x. ( n x. y ) ) / ( N x. M ) ) ) | 
						
							| 127 | 91 109 | mulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. y ) e. CC ) | 
						
							| 128 | 127 95 96 97 98 | divcan5d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( N x. ( n x. y ) ) / ( N x. M ) ) = ( ( n x. y ) / M ) ) | 
						
							| 129 | 124 126 128 | 3eqtrd |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( n x. ( N x. y ) ) / ( M x. N ) ) = ( ( n x. y ) / M ) ) | 
						
							| 130 | 122 129 | oveq12d |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) | 
						
							| 131 | 130 | adantr |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( ( n x. ( M x. x ) ) / ( M x. N ) ) + ( ( n x. ( N x. y ) ) / ( M x. N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) | 
						
							| 132 | 102 117 131 | 3eqtrd |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) | 
						
							| 133 | 132 | ex |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) ) | 
						
							| 134 | 133 | adantlrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) ) | 
						
							| 135 | 134 | imp |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) = ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) ) | 
						
							| 136 | 6 | ad3antlr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> N e. ZZ ) | 
						
							| 137 |  | nnz |  |-  ( n e. NN -> n e. ZZ ) | 
						
							| 138 | 137 | ad2antlr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> n e. ZZ ) | 
						
							| 139 |  | simprl |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> x e. ZZ ) | 
						
							| 140 |  | dvdsmultr1 |  |-  ( ( N e. ZZ /\ n e. ZZ /\ x e. ZZ ) -> ( N || n -> N || ( n x. x ) ) ) | 
						
							| 141 | 136 138 139 140 | syl3anc |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N || n -> N || ( n x. x ) ) ) | 
						
							| 142 | 138 139 | zmulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. x ) e. ZZ ) | 
						
							| 143 |  | dvdsval2 |  |-  ( ( N e. ZZ /\ N =/= 0 /\ ( n x. x ) e. ZZ ) -> ( N || ( n x. x ) <-> ( ( n x. x ) / N ) e. ZZ ) ) | 
						
							| 144 | 136 98 142 143 | syl3anc |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N || ( n x. x ) <-> ( ( n x. x ) / N ) e. ZZ ) ) | 
						
							| 145 | 141 144 | sylibd |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( N || n -> ( ( n x. x ) / N ) e. ZZ ) ) | 
						
							| 146 | 145 | adantld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( ( n x. x ) / N ) e. ZZ ) ) | 
						
							| 147 | 146 | 3impia |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) /\ ( M || n /\ N || n ) ) -> ( ( n x. x ) / N ) e. ZZ ) | 
						
							| 148 | 3 | ad3antrrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> M e. ZZ ) | 
						
							| 149 |  | simprr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> y e. ZZ ) | 
						
							| 150 |  | dvdsmultr1 |  |-  ( ( M e. ZZ /\ n e. ZZ /\ y e. ZZ ) -> ( M || n -> M || ( n x. y ) ) ) | 
						
							| 151 | 148 138 149 150 | syl3anc |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M || n -> M || ( n x. y ) ) ) | 
						
							| 152 | 138 149 | zmulcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( n x. y ) e. ZZ ) | 
						
							| 153 |  | dvdsval2 |  |-  ( ( M e. ZZ /\ M =/= 0 /\ ( n x. y ) e. ZZ ) -> ( M || ( n x. y ) <-> ( ( n x. y ) / M ) e. ZZ ) ) | 
						
							| 154 | 148 97 152 153 | syl3anc |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M || ( n x. y ) <-> ( ( n x. y ) / M ) e. ZZ ) ) | 
						
							| 155 | 151 154 | sylibd |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( M || n -> ( ( n x. y ) / M ) e. ZZ ) ) | 
						
							| 156 | 155 | adantrd |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( ( n x. y ) / M ) e. ZZ ) ) | 
						
							| 157 | 156 | 3impia |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) /\ ( M || n /\ N || n ) ) -> ( ( n x. y ) / M ) e. ZZ ) | 
						
							| 158 | 147 157 | zaddcld |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) /\ ( M || n /\ N || n ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) | 
						
							| 159 | 158 | 3expia |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ n e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M || n /\ N || n ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) ) | 
						
							| 160 | 159 | an32s |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ n e. NN ) -> ( ( M || n /\ N || n ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) ) | 
						
							| 161 | 160 | impr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) | 
						
							| 162 | 161 | an32s |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) | 
						
							| 163 | 162 | adantr |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( ( n x. x ) / N ) + ( ( n x. y ) / M ) ) e. ZZ ) | 
						
							| 164 | 135 163 | eqeltrd |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) | 
						
							| 165 | 45 | nnzd |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) e. ZZ ) | 
						
							| 166 | 165 | ad2antrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M x. N ) / ( M gcd N ) ) e. ZZ ) | 
						
							| 167 | 1 | nnne0d |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) =/= 0 ) | 
						
							| 168 | 92 63 167 53 | divne0d |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) =/= 0 ) | 
						
							| 169 | 168 | ad2antrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M x. N ) / ( M gcd N ) ) =/= 0 ) | 
						
							| 170 | 138 | adantlrr |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> n e. ZZ ) | 
						
							| 171 |  | dvdsval2 |  |-  ( ( ( ( M x. N ) / ( M gcd N ) ) e. ZZ /\ ( ( M x. N ) / ( M gcd N ) ) =/= 0 /\ n e. ZZ ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) ) | 
						
							| 172 | 166 169 170 171 | syl3anc |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) ) | 
						
							| 173 | 172 | adantr |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( n / ( ( M x. N ) / ( M gcd N ) ) ) e. ZZ ) ) | 
						
							| 174 | 164 173 | mpbird |  |-  ( ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) /\ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) || n ) | 
						
							| 175 | 174 | ex |  |-  ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) /\ ( x e. ZZ /\ y e. ZZ ) ) -> ( ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> ( ( M x. N ) / ( M gcd N ) ) || n ) ) | 
						
							| 176 | 175 | reximdvva |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( E. x e. ZZ E. y e. ZZ ( M gcd N ) = ( ( M x. x ) + ( N x. y ) ) -> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) ) | 
						
							| 177 | 89 176 | mpd |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) | 
						
							| 178 |  | 1z |  |-  1 e. ZZ | 
						
							| 179 |  | ne0i |  |-  ( 1 e. ZZ -> ZZ =/= (/) ) | 
						
							| 180 |  | r19.9rzv |  |-  ( ZZ =/= (/) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) ) | 
						
							| 181 | 178 179 180 | mp2b |  |-  ( ( ( M x. N ) / ( M gcd N ) ) || n <-> E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) | 
						
							| 182 |  | r19.9rzv |  |-  ( ZZ =/= (/) -> ( E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n <-> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) ) | 
						
							| 183 | 178 179 182 | mp2b |  |-  ( E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n <-> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) | 
						
							| 184 | 181 183 | bitri |  |-  ( ( ( M x. N ) / ( M gcd N ) ) || n <-> E. x e. ZZ E. y e. ZZ ( ( M x. N ) / ( M gcd N ) ) || n ) | 
						
							| 185 | 177 184 | sylibr |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) || n ) | 
						
							| 186 | 165 | adantr |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) e. ZZ ) | 
						
							| 187 |  | simprl |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> n e. NN ) | 
						
							| 188 |  | dvdsle |  |-  ( ( ( ( M x. N ) / ( M gcd N ) ) e. ZZ /\ n e. NN ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) ) | 
						
							| 189 | 186 187 188 | syl2anc |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) ) | 
						
							| 190 | 185 189 | mpd |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) | 
						
							| 191 | 86 190 | sylan2b |  |-  ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> ( ( M x. N ) / ( M gcd N ) ) <_ n ) | 
						
							| 192 | 79 82 191 | lensymd |  |-  ( ( ( M e. NN /\ N e. NN ) /\ n e. { x e. NN | ( M || x /\ N || x ) } ) -> -. n < ( ( M x. N ) / ( M gcd N ) ) ) | 
						
							| 193 | 32 46 78 192 | infmin |  |-  ( ( M e. NN /\ N e. NN ) -> inf ( { x e. NN | ( M || x /\ N || x ) } , RR , < ) = ( ( M x. N ) / ( M gcd N ) ) ) | 
						
							| 194 | 30 193 | eqtr2d |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M x. N ) / ( M gcd N ) ) = ( M lcm N ) ) | 
						
							| 195 | 194 45 | eqeltrrd |  |-  ( ( M e. NN /\ N e. NN ) -> ( M lcm N ) e. NN ) | 
						
							| 196 | 195 | nncnd |  |-  ( ( M e. NN /\ N e. NN ) -> ( M lcm N ) e. CC ) | 
						
							| 197 | 92 196 63 53 | divmul3d |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( ( M x. N ) / ( M gcd N ) ) = ( M lcm N ) <-> ( M x. N ) = ( ( M lcm N ) x. ( M gcd N ) ) ) ) | 
						
							| 198 | 194 197 | mpbid |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) = ( ( M lcm N ) x. ( M gcd N ) ) ) | 
						
							| 199 | 20 198 | eqtr2d |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
						
							| 200 |  | simprl |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> K e. NN ) | 
						
							| 201 |  | eleq1 |  |-  ( n = K -> ( n e. NN <-> K e. NN ) ) | 
						
							| 202 |  | breq2 |  |-  ( n = K -> ( M || n <-> M || K ) ) | 
						
							| 203 |  | breq2 |  |-  ( n = K -> ( N || n <-> N || K ) ) | 
						
							| 204 | 202 203 | anbi12d |  |-  ( n = K -> ( ( M || n /\ N || n ) <-> ( M || K /\ N || K ) ) ) | 
						
							| 205 | 201 204 | anbi12d |  |-  ( n = K -> ( ( n e. NN /\ ( M || n /\ N || n ) ) <-> ( K e. NN /\ ( M || K /\ N || K ) ) ) ) | 
						
							| 206 | 205 | anbi2d |  |-  ( n = K -> ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) <-> ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) ) ) | 
						
							| 207 |  | breq2 |  |-  ( n = K -> ( ( M lcm N ) || n <-> ( M lcm N ) || K ) ) | 
						
							| 208 | 206 207 | imbi12d |  |-  ( n = K -> ( ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( M lcm N ) || n ) <-> ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> ( M lcm N ) || K ) ) ) | 
						
							| 209 | 194 | breq1d |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( M lcm N ) || n ) ) | 
						
							| 210 | 209 | adantr |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( ( ( M x. N ) / ( M gcd N ) ) || n <-> ( M lcm N ) || n ) ) | 
						
							| 211 | 185 210 | mpbid |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( n e. NN /\ ( M || n /\ N || n ) ) ) -> ( M lcm N ) || n ) | 
						
							| 212 | 208 211 | vtoclg |  |-  ( K e. NN -> ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> ( M lcm N ) || K ) ) | 
						
							| 213 | 200 212 | mpcom |  |-  ( ( ( M e. NN /\ N e. NN ) /\ ( K e. NN /\ ( M || K /\ N || K ) ) ) -> ( M lcm N ) || K ) | 
						
							| 214 | 213 | ex |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( K e. NN /\ ( M || K /\ N || K ) ) -> ( M lcm N ) || K ) ) | 
						
							| 215 | 199 214 | jca |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) /\ ( ( K e. NN /\ ( M || K /\ N || K ) ) -> ( M lcm N ) || K ) ) ) |