| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nnz |  |-  ( M e. NN -> M e. ZZ ) | 
						
							| 2 |  | nnz |  |-  ( N e. NN -> N e. ZZ ) | 
						
							| 3 |  | lcmgcd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
						
							| 4 | 1 2 3 | syl2an |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) | 
						
							| 5 |  | nnmulcl |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN ) | 
						
							| 6 | 5 | nnnn0d |  |-  ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN0 ) | 
						
							| 7 |  | nn0re |  |-  ( ( M x. N ) e. NN0 -> ( M x. N ) e. RR ) | 
						
							| 8 |  | nn0ge0 |  |-  ( ( M x. N ) e. NN0 -> 0 <_ ( M x. N ) ) | 
						
							| 9 | 7 8 | jca |  |-  ( ( M x. N ) e. NN0 -> ( ( M x. N ) e. RR /\ 0 <_ ( M x. N ) ) ) | 
						
							| 10 |  | absid |  |-  ( ( ( M x. N ) e. RR /\ 0 <_ ( M x. N ) ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) | 
						
							| 11 | 6 9 10 | 3syl |  |-  ( ( M e. NN /\ N e. NN ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) | 
						
							| 12 | 4 11 | eqtrd |  |-  ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( M x. N ) ) |