Step |
Hyp |
Ref |
Expression |
1 |
|
nnz |
|- ( M e. NN -> M e. ZZ ) |
2 |
|
nnz |
|- ( N e. NN -> N e. ZZ ) |
3 |
|
lcmgcd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |
4 |
1 2 3
|
syl2an |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( abs ` ( M x. N ) ) ) |
5 |
|
nnmulcl |
|- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN ) |
6 |
5
|
nnnn0d |
|- ( ( M e. NN /\ N e. NN ) -> ( M x. N ) e. NN0 ) |
7 |
|
nn0re |
|- ( ( M x. N ) e. NN0 -> ( M x. N ) e. RR ) |
8 |
|
nn0ge0 |
|- ( ( M x. N ) e. NN0 -> 0 <_ ( M x. N ) ) |
9 |
7 8
|
jca |
|- ( ( M x. N ) e. NN0 -> ( ( M x. N ) e. RR /\ 0 <_ ( M x. N ) ) ) |
10 |
|
absid |
|- ( ( ( M x. N ) e. RR /\ 0 <_ ( M x. N ) ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) |
11 |
6 9 10
|
3syl |
|- ( ( M e. NN /\ N e. NN ) -> ( abs ` ( M x. N ) ) = ( M x. N ) ) |
12 |
4 11
|
eqtrd |
|- ( ( M e. NN /\ N e. NN ) -> ( ( M lcm N ) x. ( M gcd N ) ) = ( M x. N ) ) |