Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
|- ( M = 0 -> ( M lcm M ) = ( M lcm 0 ) ) |
2 |
|
fveq2 |
|- ( M = 0 -> ( abs ` M ) = ( abs ` 0 ) ) |
3 |
|
abs0 |
|- ( abs ` 0 ) = 0 |
4 |
2 3
|
eqtrdi |
|- ( M = 0 -> ( abs ` M ) = 0 ) |
5 |
1 4
|
eqeq12d |
|- ( M = 0 -> ( ( M lcm M ) = ( abs ` M ) <-> ( M lcm 0 ) = 0 ) ) |
6 |
|
lcmcl |
|- ( ( M e. ZZ /\ M e. ZZ ) -> ( M lcm M ) e. NN0 ) |
7 |
6
|
nn0cnd |
|- ( ( M e. ZZ /\ M e. ZZ ) -> ( M lcm M ) e. CC ) |
8 |
7
|
anidms |
|- ( M e. ZZ -> ( M lcm M ) e. CC ) |
9 |
8
|
adantr |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( M lcm M ) e. CC ) |
10 |
|
zabscl |
|- ( M e. ZZ -> ( abs ` M ) e. ZZ ) |
11 |
10
|
zcnd |
|- ( M e. ZZ -> ( abs ` M ) e. CC ) |
12 |
11
|
adantr |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) e. CC ) |
13 |
|
zcn |
|- ( M e. ZZ -> M e. CC ) |
14 |
13
|
adantr |
|- ( ( M e. ZZ /\ M =/= 0 ) -> M e. CC ) |
15 |
|
simpr |
|- ( ( M e. ZZ /\ M =/= 0 ) -> M =/= 0 ) |
16 |
14 15
|
absne0d |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( abs ` M ) =/= 0 ) |
17 |
|
lcmgcd |
|- ( ( M e. ZZ /\ M e. ZZ ) -> ( ( M lcm M ) x. ( M gcd M ) ) = ( abs ` ( M x. M ) ) ) |
18 |
17
|
anidms |
|- ( M e. ZZ -> ( ( M lcm M ) x. ( M gcd M ) ) = ( abs ` ( M x. M ) ) ) |
19 |
|
gcdid |
|- ( M e. ZZ -> ( M gcd M ) = ( abs ` M ) ) |
20 |
19
|
oveq2d |
|- ( M e. ZZ -> ( ( M lcm M ) x. ( M gcd M ) ) = ( ( M lcm M ) x. ( abs ` M ) ) ) |
21 |
13 13
|
absmuld |
|- ( M e. ZZ -> ( abs ` ( M x. M ) ) = ( ( abs ` M ) x. ( abs ` M ) ) ) |
22 |
18 20 21
|
3eqtr3d |
|- ( M e. ZZ -> ( ( M lcm M ) x. ( abs ` M ) ) = ( ( abs ` M ) x. ( abs ` M ) ) ) |
23 |
22
|
adantr |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( ( M lcm M ) x. ( abs ` M ) ) = ( ( abs ` M ) x. ( abs ` M ) ) ) |
24 |
9 12 12 16 23
|
mulcan2ad |
|- ( ( M e. ZZ /\ M =/= 0 ) -> ( M lcm M ) = ( abs ` M ) ) |
25 |
|
lcm0val |
|- ( M e. ZZ -> ( M lcm 0 ) = 0 ) |
26 |
5 24 25
|
pm2.61ne |
|- ( M e. ZZ -> ( M lcm M ) = ( abs ` M ) ) |