Step |
Hyp |
Ref |
Expression |
1 |
|
lcmn0val |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
2 |
1
|
3adantl1 |
|- ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
3 |
2
|
adantr |
|- ( ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) /\ ( M || K /\ N || K ) ) -> ( M lcm N ) = inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) ) |
4 |
|
breq2 |
|- ( n = K -> ( M || n <-> M || K ) ) |
5 |
|
breq2 |
|- ( n = K -> ( N || n <-> N || K ) ) |
6 |
4 5
|
anbi12d |
|- ( n = K -> ( ( M || n /\ N || n ) <-> ( M || K /\ N || K ) ) ) |
7 |
6
|
elrab |
|- ( K e. { n e. NN | ( M || n /\ N || n ) } <-> ( K e. NN /\ ( M || K /\ N || K ) ) ) |
8 |
|
ssrab2 |
|- { n e. NN | ( M || n /\ N || n ) } C_ NN |
9 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
10 |
8 9
|
sseqtri |
|- { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) |
11 |
|
infssuzle |
|- ( ( { n e. NN | ( M || n /\ N || n ) } C_ ( ZZ>= ` 1 ) /\ K e. { n e. NN | ( M || n /\ N || n ) } ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
12 |
10 11
|
mpan |
|- ( K e. { n e. NN | ( M || n /\ N || n ) } -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
13 |
7 12
|
sylbir |
|- ( ( K e. NN /\ ( M || K /\ N || K ) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
14 |
13
|
ex |
|- ( K e. NN -> ( ( M || K /\ N || K ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) ) |
15 |
14
|
3ad2ant1 |
|- ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( ( M || K /\ N || K ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) ) |
16 |
15
|
adantr |
|- ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || K /\ N || K ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) ) |
17 |
16
|
imp |
|- ( ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) /\ ( M || K /\ N || K ) ) -> inf ( { n e. NN | ( M || n /\ N || n ) } , RR , < ) <_ K ) |
18 |
3 17
|
eqbrtrd |
|- ( ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) /\ ( M || K /\ N || K ) ) -> ( M lcm N ) <_ K ) |
19 |
18
|
ex |
|- ( ( ( K e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || K /\ N || K ) -> ( M lcm N ) <_ K ) ) |