Metamath Proof Explorer


Theorem lcmn0cl

Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)

Ref Expression
Assertion lcmn0cl
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN )

Proof

Step Hyp Ref Expression
1 ssrab2
 |-  { n e. NN | ( M || n /\ N || n ) } C_ NN
2 lcmcllem
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } )
3 1 2 sselid
 |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN )