Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lcmn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ssrab2 |  |-  { n e. NN | ( M || n /\ N || n ) } C_ NN | |
| 2 | lcmcllem |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) | |
| 3 | 1 2 | sselid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |