Description: Closure of the lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | lcmn0cl | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrab2 | |- { n e. NN | ( M || n /\ N || n ) } C_ NN |
|
2 | lcmcllem | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. { n e. NN | ( M || n /\ N || n ) } ) |
|
3 | 1 2 | sselid | |- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |