| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lcm0val |  |-  ( N e. ZZ -> ( N lcm 0 ) = 0 ) | 
						
							| 2 |  | znegcl |  |-  ( N e. ZZ -> -u N e. ZZ ) | 
						
							| 3 |  | lcm0val |  |-  ( -u N e. ZZ -> ( -u N lcm 0 ) = 0 ) | 
						
							| 4 | 2 3 | syl |  |-  ( N e. ZZ -> ( -u N lcm 0 ) = 0 ) | 
						
							| 5 | 1 4 | eqtr4d |  |-  ( N e. ZZ -> ( N lcm 0 ) = ( -u N lcm 0 ) ) | 
						
							| 6 | 5 | ad2antlr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm 0 ) = ( -u N lcm 0 ) ) | 
						
							| 7 |  | oveq2 |  |-  ( M = 0 -> ( N lcm M ) = ( N lcm 0 ) ) | 
						
							| 8 |  | oveq2 |  |-  ( M = 0 -> ( -u N lcm M ) = ( -u N lcm 0 ) ) | 
						
							| 9 | 7 8 | eqeq12d |  |-  ( M = 0 -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) | 
						
							| 10 | 9 | adantl |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) | 
						
							| 11 | 6 10 | mpbird |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm M ) = ( -u N lcm M ) ) | 
						
							| 12 |  | lcmcom |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) | 
						
							| 13 |  | lcmcom |  |-  ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) | 
						
							| 14 | 2 13 | sylan2 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) | 
						
							| 15 | 12 14 | eqeq12d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) | 
						
							| 16 | 15 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) | 
						
							| 17 | 11 16 | mpbird |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) | 
						
							| 18 |  | neg0 |  |-  -u 0 = 0 | 
						
							| 19 | 18 | oveq2i |  |-  ( M lcm -u 0 ) = ( M lcm 0 ) | 
						
							| 20 | 19 | eqcomi |  |-  ( M lcm 0 ) = ( M lcm -u 0 ) | 
						
							| 21 |  | oveq2 |  |-  ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) | 
						
							| 22 |  | negeq |  |-  ( N = 0 -> -u N = -u 0 ) | 
						
							| 23 | 22 | oveq2d |  |-  ( N = 0 -> ( M lcm -u N ) = ( M lcm -u 0 ) ) | 
						
							| 24 | 20 21 23 | 3eqtr4a |  |-  ( N = 0 -> ( M lcm N ) = ( M lcm -u N ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) | 
						
							| 26 | 17 25 | jaodan |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) | 
						
							| 27 |  | dvdslcm |  |-  ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) | 
						
							| 28 | 2 27 | sylan2 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) | 
						
							| 29 |  | simpr |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) | 
						
							| 30 |  | lcmcl |  |-  ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) | 
						
							| 31 | 2 30 | sylan2 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) | 
						
							| 32 | 31 | nn0zd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. ZZ ) | 
						
							| 33 |  | negdvdsb |  |-  ( ( N e. ZZ /\ ( M lcm -u N ) e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) | 
						
							| 34 | 29 32 33 | syl2anc |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) | 
						
							| 35 | 34 | anbi2d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) <-> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) ) | 
						
							| 36 | 28 35 | mpbird |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) | 
						
							| 38 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 39 | 38 | negeq0d |  |-  ( N e. ZZ -> ( N = 0 <-> -u N = 0 ) ) | 
						
							| 40 | 39 | orbi2d |  |-  ( N e. ZZ -> ( ( M = 0 \/ N = 0 ) <-> ( M = 0 \/ -u N = 0 ) ) ) | 
						
							| 41 | 40 | notbid |  |-  ( N e. ZZ -> ( -. ( M = 0 \/ N = 0 ) <-> -. ( M = 0 \/ -u N = 0 ) ) ) | 
						
							| 42 | 41 | biimpa |  |-  ( ( N e. ZZ /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) | 
						
							| 43 | 42 | adantll |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) | 
						
							| 44 |  | lcmn0cl |  |-  ( ( ( M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) | 
						
							| 45 | 2 44 | sylanl2 |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) | 
						
							| 46 | 43 45 | syldan |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) e. NN ) | 
						
							| 47 |  | simpl |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) | 
						
							| 48 |  | 3anass |  |-  ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) <-> ( ( M lcm -u N ) e. NN /\ ( M e. ZZ /\ N e. ZZ ) ) ) | 
						
							| 49 | 46 47 48 | sylanbrc |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) ) | 
						
							| 50 |  | simpr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ N = 0 ) ) | 
						
							| 51 |  | lcmledvds |  |-  ( ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) | 
						
							| 52 | 49 50 51 | syl2anc |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) | 
						
							| 53 | 37 52 | mpd |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) | 
						
							| 54 |  | dvdslcm |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 55 | 54 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) | 
						
							| 56 |  | simplr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> N e. ZZ ) | 
						
							| 57 |  | lcmn0cl |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) | 
						
							| 58 | 57 | nnzd |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. ZZ ) | 
						
							| 59 |  | negdvdsb |  |-  ( ( N e. ZZ /\ ( M lcm N ) e. ZZ ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) | 
						
							| 60 | 56 58 59 | syl2anc |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) | 
						
							| 61 | 60 | anbi2d |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) <-> ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) ) ) | 
						
							| 62 |  | lcmledvds |  |-  ( ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) | 
						
							| 63 | 62 | ex |  |-  ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) | 
						
							| 64 | 2 63 | syl3an3 |  |-  ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) | 
						
							| 65 | 64 | 3expib |  |-  ( ( M lcm N ) e. NN -> ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) ) | 
						
							| 66 | 57 47 43 65 | syl3c |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) | 
						
							| 67 | 61 66 | sylbid |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) | 
						
							| 68 | 55 67 | mpd |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) | 
						
							| 69 |  | lcmcl |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) | 
						
							| 70 | 69 | nn0red |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. RR ) | 
						
							| 71 | 30 | nn0red |  |-  ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. RR ) | 
						
							| 72 | 2 71 | sylan2 |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. RR ) | 
						
							| 73 | 70 72 | letri3d |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) | 
						
							| 74 | 73 | adantr |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) | 
						
							| 75 | 53 68 74 | mpbir2and |  |-  ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) | 
						
							| 76 | 26 75 | pm2.61dan |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( M lcm -u N ) ) | 
						
							| 77 | 76 | eqcomd |  |-  ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) |