Step |
Hyp |
Ref |
Expression |
1 |
|
lcm0val |
|- ( N e. ZZ -> ( N lcm 0 ) = 0 ) |
2 |
|
znegcl |
|- ( N e. ZZ -> -u N e. ZZ ) |
3 |
|
lcm0val |
|- ( -u N e. ZZ -> ( -u N lcm 0 ) = 0 ) |
4 |
2 3
|
syl |
|- ( N e. ZZ -> ( -u N lcm 0 ) = 0 ) |
5 |
1 4
|
eqtr4d |
|- ( N e. ZZ -> ( N lcm 0 ) = ( -u N lcm 0 ) ) |
6 |
5
|
ad2antlr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm 0 ) = ( -u N lcm 0 ) ) |
7 |
|
oveq2 |
|- ( M = 0 -> ( N lcm M ) = ( N lcm 0 ) ) |
8 |
|
oveq2 |
|- ( M = 0 -> ( -u N lcm M ) = ( -u N lcm 0 ) ) |
9 |
7 8
|
eqeq12d |
|- ( M = 0 -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) |
10 |
9
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( N lcm M ) = ( -u N lcm M ) <-> ( N lcm 0 ) = ( -u N lcm 0 ) ) ) |
11 |
6 10
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( N lcm M ) = ( -u N lcm M ) ) |
12 |
|
lcmcom |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( N lcm M ) ) |
13 |
|
lcmcom |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) |
14 |
2 13
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( -u N lcm M ) ) |
15 |
12 14
|
eqeq12d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) |
16 |
15
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( N lcm M ) = ( -u N lcm M ) ) ) |
17 |
11 16
|
mpbird |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ M = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) |
18 |
|
neg0 |
|- -u 0 = 0 |
19 |
18
|
oveq2i |
|- ( M lcm -u 0 ) = ( M lcm 0 ) |
20 |
19
|
eqcomi |
|- ( M lcm 0 ) = ( M lcm -u 0 ) |
21 |
|
oveq2 |
|- ( N = 0 -> ( M lcm N ) = ( M lcm 0 ) ) |
22 |
|
negeq |
|- ( N = 0 -> -u N = -u 0 ) |
23 |
22
|
oveq2d |
|- ( N = 0 -> ( M lcm -u N ) = ( M lcm -u 0 ) ) |
24 |
20 21 23
|
3eqtr4a |
|- ( N = 0 -> ( M lcm N ) = ( M lcm -u N ) ) |
25 |
24
|
adantl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ N = 0 ) -> ( M lcm N ) = ( M lcm -u N ) ) |
26 |
17 25
|
jaodan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) |
27 |
|
dvdslcm |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) |
28 |
2 27
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) |
29 |
|
simpr |
|- ( ( M e. ZZ /\ N e. ZZ ) -> N e. ZZ ) |
30 |
|
lcmcl |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) |
31 |
2 30
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. NN0 ) |
32 |
31
|
nn0zd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. ZZ ) |
33 |
|
negdvdsb |
|- ( ( N e. ZZ /\ ( M lcm -u N ) e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) |
34 |
29 32 33
|
syl2anc |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( N || ( M lcm -u N ) <-> -u N || ( M lcm -u N ) ) ) |
35 |
34
|
anbi2d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) <-> ( M || ( M lcm -u N ) /\ -u N || ( M lcm -u N ) ) ) ) |
36 |
28 35
|
mpbird |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) |
37 |
36
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) ) |
38 |
|
zcn |
|- ( N e. ZZ -> N e. CC ) |
39 |
38
|
negeq0d |
|- ( N e. ZZ -> ( N = 0 <-> -u N = 0 ) ) |
40 |
39
|
orbi2d |
|- ( N e. ZZ -> ( ( M = 0 \/ N = 0 ) <-> ( M = 0 \/ -u N = 0 ) ) ) |
41 |
40
|
notbid |
|- ( N e. ZZ -> ( -. ( M = 0 \/ N = 0 ) <-> -. ( M = 0 \/ -u N = 0 ) ) ) |
42 |
41
|
biimpa |
|- ( ( N e. ZZ /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) |
43 |
42
|
adantll |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ -u N = 0 ) ) |
44 |
|
lcmn0cl |
|- ( ( ( M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
45 |
2 44
|
sylanl2 |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
46 |
43 45
|
syldan |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) e. NN ) |
47 |
|
simpl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M e. ZZ /\ N e. ZZ ) ) |
48 |
|
3anass |
|- ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) <-> ( ( M lcm -u N ) e. NN /\ ( M e. ZZ /\ N e. ZZ ) ) ) |
49 |
46 47 48
|
sylanbrc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) ) |
50 |
|
simpr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> -. ( M = 0 \/ N = 0 ) ) |
51 |
|
lcmledvds |
|- ( ( ( ( M lcm -u N ) e. NN /\ M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) |
52 |
49 50 51
|
syl2anc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm -u N ) /\ N || ( M lcm -u N ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) ) |
53 |
37 52
|
mpd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) <_ ( M lcm -u N ) ) |
54 |
|
dvdslcm |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
55 |
54
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M || ( M lcm N ) /\ N || ( M lcm N ) ) ) |
56 |
|
simplr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> N e. ZZ ) |
57 |
|
lcmn0cl |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. NN ) |
58 |
57
|
nnzd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) e. ZZ ) |
59 |
|
negdvdsb |
|- ( ( N e. ZZ /\ ( M lcm N ) e. ZZ ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) |
60 |
56 58 59
|
syl2anc |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( N || ( M lcm N ) <-> -u N || ( M lcm N ) ) ) |
61 |
60
|
anbi2d |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) <-> ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) ) ) |
62 |
|
lcmledvds |
|- ( ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) /\ -. ( M = 0 \/ -u N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
63 |
62
|
ex |
|- ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ -u N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
64 |
2 63
|
syl3an3 |
|- ( ( ( M lcm N ) e. NN /\ M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
65 |
64
|
3expib |
|- ( ( M lcm N ) e. NN -> ( ( M e. ZZ /\ N e. ZZ ) -> ( -. ( M = 0 \/ -u N = 0 ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) ) ) |
66 |
57 47 43 65
|
syl3c |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ -u N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
67 |
61 66
|
sylbid |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M || ( M lcm N ) /\ N || ( M lcm N ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) ) |
68 |
55 67
|
mpd |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm -u N ) <_ ( M lcm N ) ) |
69 |
|
lcmcl |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. NN0 ) |
70 |
69
|
nn0red |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) e. RR ) |
71 |
30
|
nn0red |
|- ( ( M e. ZZ /\ -u N e. ZZ ) -> ( M lcm -u N ) e. RR ) |
72 |
2 71
|
sylan2 |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) e. RR ) |
73 |
70 72
|
letri3d |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
74 |
73
|
adantr |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( ( M lcm N ) = ( M lcm -u N ) <-> ( ( M lcm N ) <_ ( M lcm -u N ) /\ ( M lcm -u N ) <_ ( M lcm N ) ) ) ) |
75 |
53 68 74
|
mpbir2and |
|- ( ( ( M e. ZZ /\ N e. ZZ ) /\ -. ( M = 0 \/ N = 0 ) ) -> ( M lcm N ) = ( M lcm -u N ) ) |
76 |
26 75
|
pm2.61dan |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm N ) = ( M lcm -u N ) ) |
77 |
76
|
eqcomd |
|- ( ( M e. ZZ /\ N e. ZZ ) -> ( M lcm -u N ) = ( M lcm N ) ) |