Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ldillaut.h | |- H = ( LHyp ` K ) |
|
ldillaut.i | |- I = ( LAut ` K ) |
||
ldillaut.d | |- D = ( ( LDil ` K ) ` W ) |
||
Assertion | ldillaut | |- ( ( ( K e. V /\ W e. H ) /\ F e. D ) -> F e. I ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ldillaut.h | |- H = ( LHyp ` K ) |
|
2 | ldillaut.i | |- I = ( LAut ` K ) |
|
3 | ldillaut.d | |- D = ( ( LDil ` K ) ` W ) |
|
4 | eqid | |- ( Base ` K ) = ( Base ` K ) |
|
5 | eqid | |- ( le ` K ) = ( le ` K ) |
|
6 | 4 5 1 2 3 | isldil | |- ( ( K e. V /\ W e. H ) -> ( F e. D <-> ( F e. I /\ A. x e. ( Base ` K ) ( x ( le ` K ) W -> ( F ` x ) = x ) ) ) ) |
7 | 6 | simprbda | |- ( ( ( K e. V /\ W e. H ) /\ F e. D ) -> F e. I ) |