Metamath Proof Explorer


Theorem ldillaut

Description: A lattice dilation is an automorphism. (Contributed by NM, 20-May-2012)

Ref Expression
Hypotheses ldillaut.h
|- H = ( LHyp ` K )
ldillaut.i
|- I = ( LAut ` K )
ldillaut.d
|- D = ( ( LDil ` K ) ` W )
Assertion ldillaut
|- ( ( ( K e. V /\ W e. H ) /\ F e. D ) -> F e. I )

Proof

Step Hyp Ref Expression
1 ldillaut.h
 |-  H = ( LHyp ` K )
2 ldillaut.i
 |-  I = ( LAut ` K )
3 ldillaut.d
 |-  D = ( ( LDil ` K ) ` W )
4 eqid
 |-  ( Base ` K ) = ( Base ` K )
5 eqid
 |-  ( le ` K ) = ( le ` K )
6 4 5 1 2 3 isldil
 |-  ( ( K e. V /\ W e. H ) -> ( F e. D <-> ( F e. I /\ A. x e. ( Base ` K ) ( x ( le ` K ) W -> ( F ` x ) = x ) ) ) )
7 6 simprbda
 |-  ( ( ( K e. V /\ W e. H ) /\ F e. D ) -> F e. I )