| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ldilval.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | ldilval.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | ldilval.h |  |-  H = ( LHyp ` K ) | 
						
							| 4 |  | ldilval.d |  |-  D = ( ( LDil ` K ) ` W ) | 
						
							| 5 |  | eqid |  |-  ( LAut ` K ) = ( LAut ` K ) | 
						
							| 6 | 1 2 3 5 4 | isldil |  |-  ( ( K e. V /\ W e. H ) -> ( F e. D <-> ( F e. ( LAut ` K ) /\ A. x e. B ( x .<_ W -> ( F ` x ) = x ) ) ) ) | 
						
							| 7 |  | simpr |  |-  ( ( F e. ( LAut ` K ) /\ A. x e. B ( x .<_ W -> ( F ` x ) = x ) ) -> A. x e. B ( x .<_ W -> ( F ` x ) = x ) ) | 
						
							| 8 | 6 7 | biimtrdi |  |-  ( ( K e. V /\ W e. H ) -> ( F e. D -> A. x e. B ( x .<_ W -> ( F ` x ) = x ) ) ) | 
						
							| 9 |  | breq1 |  |-  ( x = X -> ( x .<_ W <-> X .<_ W ) ) | 
						
							| 10 |  | fveq2 |  |-  ( x = X -> ( F ` x ) = ( F ` X ) ) | 
						
							| 11 |  | id |  |-  ( x = X -> x = X ) | 
						
							| 12 | 10 11 | eqeq12d |  |-  ( x = X -> ( ( F ` x ) = x <-> ( F ` X ) = X ) ) | 
						
							| 13 | 9 12 | imbi12d |  |-  ( x = X -> ( ( x .<_ W -> ( F ` x ) = x ) <-> ( X .<_ W -> ( F ` X ) = X ) ) ) | 
						
							| 14 | 13 | rspccv |  |-  ( A. x e. B ( x .<_ W -> ( F ` x ) = x ) -> ( X e. B -> ( X .<_ W -> ( F ` X ) = X ) ) ) | 
						
							| 15 | 14 | impd |  |-  ( A. x e. B ( x .<_ W -> ( F ` x ) = x ) -> ( ( X e. B /\ X .<_ W ) -> ( F ` X ) = X ) ) | 
						
							| 16 | 8 15 | syl6 |  |-  ( ( K e. V /\ W e. H ) -> ( F e. D -> ( ( X e. B /\ X .<_ W ) -> ( F ` X ) = X ) ) ) | 
						
							| 17 | 16 | 3imp |  |-  ( ( ( K e. V /\ W e. H ) /\ F e. D /\ ( X e. B /\ X .<_ W ) ) -> ( F ` X ) = X ) |