| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ldiv.a |
|- ( ph -> A e. CC ) |
| 2 |
|
ldiv.b |
|- ( ph -> B e. CC ) |
| 3 |
|
ldiv.c |
|- ( ph -> C e. CC ) |
| 4 |
|
ldiv.bn0 |
|- ( ph -> B =/= 0 ) |
| 5 |
|
oveq1 |
|- ( ( A x. B ) = C -> ( ( A x. B ) / B ) = ( C / B ) ) |
| 6 |
1 2 4
|
divcan4d |
|- ( ph -> ( ( A x. B ) / B ) = A ) |
| 7 |
6
|
eqeq1d |
|- ( ph -> ( ( ( A x. B ) / B ) = ( C / B ) <-> A = ( C / B ) ) ) |
| 8 |
5 7
|
imbitrid |
|- ( ph -> ( ( A x. B ) = C -> A = ( C / B ) ) ) |
| 9 |
|
oveq1 |
|- ( A = ( C / B ) -> ( A x. B ) = ( ( C / B ) x. B ) ) |
| 10 |
3 2 4
|
divcan1d |
|- ( ph -> ( ( C / B ) x. B ) = C ) |
| 11 |
10
|
eqeq2d |
|- ( ph -> ( ( A x. B ) = ( ( C / B ) x. B ) <-> ( A x. B ) = C ) ) |
| 12 |
9 11
|
imbitrid |
|- ( ph -> ( A = ( C / B ) -> ( A x. B ) = C ) ) |
| 13 |
8 12
|
impbid |
|- ( ph -> ( ( A x. B ) = C <-> A = ( C / B ) ) ) |