Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> A e. RR ) |
2 |
|
simprl |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> C e. RR ) |
3 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> B e. RR ) |
4 |
|
leadd1 |
|- ( ( A e. RR /\ C e. RR /\ B e. RR ) -> ( A <_ C <-> ( A + B ) <_ ( C + B ) ) ) |
5 |
1 2 3 4
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A <_ C <-> ( A + B ) <_ ( C + B ) ) ) |
6 |
|
simprr |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> D e. RR ) |
7 |
|
leadd2 |
|- ( ( B e. RR /\ D e. RR /\ C e. RR ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
8 |
3 6 2 7
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( B <_ D <-> ( C + B ) <_ ( C + D ) ) ) |
9 |
5 8
|
anbi12d |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B <_ D ) <-> ( ( A + B ) <_ ( C + B ) /\ ( C + B ) <_ ( C + D ) ) ) ) |
10 |
1 3
|
readdcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( A + B ) e. RR ) |
11 |
2 3
|
readdcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + B ) e. RR ) |
12 |
2 6
|
readdcld |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( C + D ) e. RR ) |
13 |
|
letr |
|- ( ( ( A + B ) e. RR /\ ( C + B ) e. RR /\ ( C + D ) e. RR ) -> ( ( ( A + B ) <_ ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) <_ ( C + D ) ) ) |
14 |
10 11 12 13
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( ( A + B ) <_ ( C + B ) /\ ( C + B ) <_ ( C + D ) ) -> ( A + B ) <_ ( C + D ) ) ) |
15 |
9 14
|
sylbid |
|- ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A <_ C /\ B <_ D ) -> ( A + B ) <_ ( C + D ) ) ) |