Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016) (Proof shortened by Glauco Siliprandi, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | leidd.1 | |- ( ph -> A e. RR ) |
|
| ltnegd.2 | |- ( ph -> B e. RR ) |
||
| ltadd1d.3 | |- ( ph -> C e. RR ) |
||
| lt2addd.4 | |- ( ph -> D e. RR ) |
||
| le2addd.5 | |- ( ph -> A <_ C ) |
||
| le2addd.6 | |- ( ph -> B <_ D ) |
||
| Assertion | le2addd | |- ( ph -> ( A + B ) <_ ( C + D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | leidd.1 | |- ( ph -> A e. RR ) |
|
| 2 | ltnegd.2 | |- ( ph -> B e. RR ) |
|
| 3 | ltadd1d.3 | |- ( ph -> C e. RR ) |
|
| 4 | lt2addd.4 | |- ( ph -> D e. RR ) |
|
| 5 | le2addd.5 | |- ( ph -> A <_ C ) |
|
| 6 | le2addd.6 | |- ( ph -> B <_ D ) |
|
| 7 | 1 2 | readdcld | |- ( ph -> ( A + B ) e. RR ) |
| 8 | 3 2 | readdcld | |- ( ph -> ( C + B ) e. RR ) |
| 9 | 3 4 | readdcld | |- ( ph -> ( C + D ) e. RR ) |
| 10 | 1 3 2 5 | leadd1dd | |- ( ph -> ( A + B ) <_ ( C + B ) ) |
| 11 | 2 4 3 6 | leadd2dd | |- ( ph -> ( C + B ) <_ ( C + D ) ) |
| 12 | 7 8 9 10 11 | letrd | |- ( ph -> ( A + B ) <_ ( C + D ) ) |