Metamath Proof Explorer


Theorem le2addd

Description: Adding both side of two inequalities. (Contributed by Mario Carneiro, 27-May-2016) (Proof shortened by Glauco Siliprandi, 5-Apr-2020)

Ref Expression
Hypotheses leidd.1
|- ( ph -> A e. RR )
ltnegd.2
|- ( ph -> B e. RR )
ltadd1d.3
|- ( ph -> C e. RR )
lt2addd.4
|- ( ph -> D e. RR )
le2addd.5
|- ( ph -> A <_ C )
le2addd.6
|- ( ph -> B <_ D )
Assertion le2addd
|- ( ph -> ( A + B ) <_ ( C + D ) )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 ltnegd.2
 |-  ( ph -> B e. RR )
3 ltadd1d.3
 |-  ( ph -> C e. RR )
4 lt2addd.4
 |-  ( ph -> D e. RR )
5 le2addd.5
 |-  ( ph -> A <_ C )
6 le2addd.6
 |-  ( ph -> B <_ D )
7 1 2 readdcld
 |-  ( ph -> ( A + B ) e. RR )
8 3 2 readdcld
 |-  ( ph -> ( C + B ) e. RR )
9 3 4 readdcld
 |-  ( ph -> ( C + D ) e. RR )
10 1 3 2 5 leadd1dd
 |-  ( ph -> ( A + B ) <_ ( C + B ) )
11 2 4 3 6 leadd2dd
 |-  ( ph -> ( C + B ) <_ ( C + D ) )
12 7 8 9 10 11 letrd
 |-  ( ph -> ( A + B ) <_ ( C + D ) )