Description: The square function on nonnegative reals is nondecreasing. (Contributed by NM, 12-Sep-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | resqcl.1 | |- A e. RR | |
| lt2sq.2 | |- B e. RR | ||
| Assertion | le2sqi | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | resqcl.1 | |- A e. RR | |
| 2 | lt2sq.2 | |- B e. RR | |
| 3 | 1 2 | le2msqi | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A <_ B <-> ( A x. A ) <_ ( B x. B ) ) ) | 
| 4 | 1 | recni | |- A e. CC | 
| 5 | 4 | sqvali | |- ( A ^ 2 ) = ( A x. A ) | 
| 6 | 2 | recni | |- B e. CC | 
| 7 | 6 | sqvali | |- ( B ^ 2 ) = ( B x. B ) | 
| 8 | 5 7 | breq12i | |- ( ( A ^ 2 ) <_ ( B ^ 2 ) <-> ( A x. A ) <_ ( B x. B ) ) | 
| 9 | 3 8 | bitr4di | |- ( ( 0 <_ A /\ 0 <_ B ) -> ( A <_ B <-> ( A ^ 2 ) <_ ( B ^ 2 ) ) ) |