Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
|- ( A e. RR -> 0 e. RR ) |
2 |
|
id |
|- ( A e. RR -> A e. RR ) |
3 |
|
absid |
|- ( ( A e. RR /\ 0 <_ A ) -> ( abs ` A ) = A ) |
4 |
|
eqcom |
|- ( ( abs ` A ) = A <-> A = ( abs ` A ) ) |
5 |
|
eqle |
|- ( ( A e. RR /\ A = ( abs ` A ) ) -> A <_ ( abs ` A ) ) |
6 |
4 5
|
sylan2b |
|- ( ( A e. RR /\ ( abs ` A ) = A ) -> A <_ ( abs ` A ) ) |
7 |
3 6
|
syldan |
|- ( ( A e. RR /\ 0 <_ A ) -> A <_ ( abs ` A ) ) |
8 |
|
recn |
|- ( A e. RR -> A e. CC ) |
9 |
|
absge0 |
|- ( A e. CC -> 0 <_ ( abs ` A ) ) |
10 |
8 9
|
syl |
|- ( A e. RR -> 0 <_ ( abs ` A ) ) |
11 |
|
abscl |
|- ( A e. CC -> ( abs ` A ) e. RR ) |
12 |
8 11
|
syl |
|- ( A e. RR -> ( abs ` A ) e. RR ) |
13 |
|
0re |
|- 0 e. RR |
14 |
|
letr |
|- ( ( A e. RR /\ 0 e. RR /\ ( abs ` A ) e. RR ) -> ( ( A <_ 0 /\ 0 <_ ( abs ` A ) ) -> A <_ ( abs ` A ) ) ) |
15 |
13 14
|
mp3an2 |
|- ( ( A e. RR /\ ( abs ` A ) e. RR ) -> ( ( A <_ 0 /\ 0 <_ ( abs ` A ) ) -> A <_ ( abs ` A ) ) ) |
16 |
12 15
|
mpdan |
|- ( A e. RR -> ( ( A <_ 0 /\ 0 <_ ( abs ` A ) ) -> A <_ ( abs ` A ) ) ) |
17 |
10 16
|
mpan2d |
|- ( A e. RR -> ( A <_ 0 -> A <_ ( abs ` A ) ) ) |
18 |
17
|
imp |
|- ( ( A e. RR /\ A <_ 0 ) -> A <_ ( abs ` A ) ) |
19 |
1 2 7 18
|
lecasei |
|- ( A e. RR -> A <_ ( abs ` A ) ) |