| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leadd12dd.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | leadd12dd.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | leadd12dd.c |  |-  ( ph -> C e. RR ) | 
						
							| 4 |  | leadd12dd.d |  |-  ( ph -> D e. RR ) | 
						
							| 5 |  | leadd12dd.ac |  |-  ( ph -> A <_ C ) | 
						
							| 6 |  | leadd12dd.bd |  |-  ( ph -> B <_ D ) | 
						
							| 7 | 1 2 | readdcld |  |-  ( ph -> ( A + B ) e. RR ) | 
						
							| 8 | 3 2 | readdcld |  |-  ( ph -> ( C + B ) e. RR ) | 
						
							| 9 | 3 4 | readdcld |  |-  ( ph -> ( C + D ) e. RR ) | 
						
							| 10 | 1 3 2 5 | leadd1dd |  |-  ( ph -> ( A + B ) <_ ( C + B ) ) | 
						
							| 11 | 2 4 3 6 | leadd2dd |  |-  ( ph -> ( C + B ) <_ ( C + D ) ) | 
						
							| 12 | 7 8 9 10 11 | letrd |  |-  ( ph -> ( A + B ) <_ ( C + D ) ) |