| Step |
Hyp |
Ref |
Expression |
| 1 |
|
leadd1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( A + C ) <_ ( B + C ) ) ) |
| 2 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. RR ) |
| 3 |
2
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> A e. CC ) |
| 4 |
|
simp3 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. RR ) |
| 5 |
4
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> C e. CC ) |
| 6 |
3 5
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A + C ) = ( C + A ) ) |
| 7 |
|
simp2 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. RR ) |
| 8 |
7
|
recnd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> B e. CC ) |
| 9 |
8 5
|
addcomd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( B + C ) = ( C + B ) ) |
| 10 |
6 9
|
breq12d |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + C ) <_ ( B + C ) <-> ( C + A ) <_ ( C + B ) ) ) |
| 11 |
1 10
|
bitrd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( A <_ B <-> ( C + A ) <_ ( C + B ) ) ) |