Metamath Proof Explorer


Theorem leaddle0

Description: The sum of a real number and a second real number is less than the real number iff the second real number is negative. (Contributed by Alexander van der Vekens, 30-May-2018)

Ref Expression
Assertion leaddle0
|- ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) <_ A <-> B <_ 0 ) )

Proof

Step Hyp Ref Expression
1 leaddsub2
 |-  ( ( A e. RR /\ B e. RR /\ A e. RR ) -> ( ( A + B ) <_ A <-> B <_ ( A - A ) ) )
2 1 3anidm13
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) <_ A <-> B <_ ( A - A ) ) )
3 recn
 |-  ( A e. RR -> A e. CC )
4 3 subidd
 |-  ( A e. RR -> ( A - A ) = 0 )
5 4 adantr
 |-  ( ( A e. RR /\ B e. RR ) -> ( A - A ) = 0 )
6 5 breq2d
 |-  ( ( A e. RR /\ B e. RR ) -> ( B <_ ( A - A ) <-> B <_ 0 ) )
7 2 6 bitrd
 |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + B ) <_ A <-> B <_ 0 ) )