| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltsubadd |
|- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) < A <-> C < ( A + B ) ) ) |
| 2 |
1
|
3com13 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) < A <-> C < ( A + B ) ) ) |
| 3 |
|
resubcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C - B ) e. RR ) |
| 4 |
|
ltnle |
|- ( ( ( C - B ) e. RR /\ A e. RR ) -> ( ( C - B ) < A <-> -. A <_ ( C - B ) ) ) |
| 5 |
3 4
|
stoic3 |
|- ( ( C e. RR /\ B e. RR /\ A e. RR ) -> ( ( C - B ) < A <-> -. A <_ ( C - B ) ) ) |
| 6 |
5
|
3com13 |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( C - B ) < A <-> -. A <_ ( C - B ) ) ) |
| 7 |
|
readdcl |
|- ( ( A e. RR /\ B e. RR ) -> ( A + B ) e. RR ) |
| 8 |
|
ltnle |
|- ( ( C e. RR /\ ( A + B ) e. RR ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) ) |
| 9 |
7 8
|
sylan2 |
|- ( ( C e. RR /\ ( A e. RR /\ B e. RR ) ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) ) |
| 10 |
9
|
3impb |
|- ( ( C e. RR /\ A e. RR /\ B e. RR ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) ) |
| 11 |
10
|
3coml |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( C < ( A + B ) <-> -. ( A + B ) <_ C ) ) |
| 12 |
2 6 11
|
3bitr3rd |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( -. ( A + B ) <_ C <-> -. A <_ ( C - B ) ) ) |
| 13 |
12
|
con4bid |
|- ( ( A e. RR /\ B e. RR /\ C e. RR ) -> ( ( A + B ) <_ C <-> A <_ ( C - B ) ) ) |