Metamath Proof Explorer


Theorem leat

Description: A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013)

Ref Expression
Hypotheses leatom.b
|- B = ( Base ` K )
leatom.l
|- .<_ = ( le ` K )
leatom.z
|- .0. = ( 0. ` K )
leatom.a
|- A = ( Atoms ` K )
Assertion leat
|- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( X = P \/ X = .0. ) )

Proof

Step Hyp Ref Expression
1 leatom.b
 |-  B = ( Base ` K )
2 leatom.l
 |-  .<_ = ( le ` K )
3 leatom.z
 |-  .0. = ( 0. ` K )
4 leatom.a
 |-  A = ( Atoms ` K )
5 1 2 3 4 leatb
 |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = P \/ X = .0. ) ) )
6 5 biimpa
 |-  ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( X = P \/ X = .0. ) )