Description: A poset element less than or equal to an atom equals either zero or the atom. (Contributed by NM, 15-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Hypotheses | leatom.b | |- B = ( Base ` K ) |
|
leatom.l | |- .<_ = ( le ` K ) |
||
leatom.z | |- .0. = ( 0. ` K ) |
||
leatom.a | |- A = ( Atoms ` K ) |
||
Assertion | leat | |- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( X = P \/ X = .0. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | leatom.b | |- B = ( Base ` K ) |
|
2 | leatom.l | |- .<_ = ( le ` K ) |
|
3 | leatom.z | |- .0. = ( 0. ` K ) |
|
4 | leatom.a | |- A = ( Atoms ` K ) |
|
5 | 1 2 3 4 | leatb | |- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = P \/ X = .0. ) ) ) |
6 | 5 | biimpa | |- ( ( ( K e. OP /\ X e. B /\ P e. A ) /\ X .<_ P ) -> ( X = P \/ X = .0. ) ) |