| Step | Hyp | Ref | Expression | 
						
							| 1 |  | leatom.b |  |-  B = ( Base ` K ) | 
						
							| 2 |  | leatom.l |  |-  .<_ = ( le ` K ) | 
						
							| 3 |  | leatom.z |  |-  .0. = ( 0. ` K ) | 
						
							| 4 |  | leatom.a |  |-  A = ( Atoms ` K ) | 
						
							| 5 | 1 2 3 | op0le |  |-  ( ( K e. OP /\ X e. B ) -> .0. .<_ X ) | 
						
							| 6 | 5 | 3adant3 |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> .0. .<_ X ) | 
						
							| 7 | 6 | biantrurd |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( .0. .<_ X /\ X .<_ P ) ) ) | 
						
							| 8 |  | opposet |  |-  ( K e. OP -> K e. Poset ) | 
						
							| 9 | 8 | 3ad2ant1 |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> K e. Poset ) | 
						
							| 10 | 1 3 | op0cl |  |-  ( K e. OP -> .0. e. B ) | 
						
							| 11 | 1 4 | atbase |  |-  ( P e. A -> P e. B ) | 
						
							| 12 |  | id |  |-  ( X e. B -> X e. B ) | 
						
							| 13 | 10 11 12 | 3anim123i |  |-  ( ( K e. OP /\ P e. A /\ X e. B ) -> ( .0. e. B /\ P e. B /\ X e. B ) ) | 
						
							| 14 | 13 | 3com23 |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> ( .0. e. B /\ P e. B /\ X e. B ) ) | 
						
							| 15 |  | eqid |  |-  (  | 
						
							| 16 | 3 15 4 | atcvr0 |  |-  ( ( K e. OP /\ P e. A ) -> .0. (  | 
						
							| 17 | 16 | 3adant2 |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> .0. (  | 
						
							| 18 | 1 2 15 | cvrnbtwn4 |  |-  ( ( K e. Poset /\ ( .0. e. B /\ P e. B /\ X e. B ) /\ .0. (  ( ( .0. .<_ X /\ X .<_ P ) <-> ( .0. = X \/ X = P ) ) ) | 
						
							| 19 | 9 14 17 18 | syl3anc |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> ( ( .0. .<_ X /\ X .<_ P ) <-> ( .0. = X \/ X = P ) ) ) | 
						
							| 20 |  | eqcom |  |-  ( .0. = X <-> X = .0. ) | 
						
							| 21 | 20 | orbi1i |  |-  ( ( .0. = X \/ X = P ) <-> ( X = .0. \/ X = P ) ) | 
						
							| 22 | 19 21 | bitrdi |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> ( ( .0. .<_ X /\ X .<_ P ) <-> ( X = .0. \/ X = P ) ) ) | 
						
							| 23 | 7 22 | bitrd |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = .0. \/ X = P ) ) ) | 
						
							| 24 |  | orcom |  |-  ( ( X = .0. \/ X = P ) <-> ( X = P \/ X = .0. ) ) | 
						
							| 25 | 23 24 | bitrdi |  |-  ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = P \/ X = .0. ) ) ) |