Step |
Hyp |
Ref |
Expression |
1 |
|
leatom.b |
|- B = ( Base ` K ) |
2 |
|
leatom.l |
|- .<_ = ( le ` K ) |
3 |
|
leatom.z |
|- .0. = ( 0. ` K ) |
4 |
|
leatom.a |
|- A = ( Atoms ` K ) |
5 |
1 2 3
|
op0le |
|- ( ( K e. OP /\ X e. B ) -> .0. .<_ X ) |
6 |
5
|
3adant3 |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> .0. .<_ X ) |
7 |
6
|
biantrurd |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( .0. .<_ X /\ X .<_ P ) ) ) |
8 |
|
opposet |
|- ( K e. OP -> K e. Poset ) |
9 |
8
|
3ad2ant1 |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> K e. Poset ) |
10 |
1 3
|
op0cl |
|- ( K e. OP -> .0. e. B ) |
11 |
1 4
|
atbase |
|- ( P e. A -> P e. B ) |
12 |
|
id |
|- ( X e. B -> X e. B ) |
13 |
10 11 12
|
3anim123i |
|- ( ( K e. OP /\ P e. A /\ X e. B ) -> ( .0. e. B /\ P e. B /\ X e. B ) ) |
14 |
13
|
3com23 |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( .0. e. B /\ P e. B /\ X e. B ) ) |
15 |
|
eqid |
|- ( |
16 |
3 15 4
|
atcvr0 |
|- ( ( K e. OP /\ P e. A ) -> .0. ( |
17 |
16
|
3adant2 |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> .0. ( |
18 |
1 2 15
|
cvrnbtwn4 |
|- ( ( K e. Poset /\ ( .0. e. B /\ P e. B /\ X e. B ) /\ .0. ( ( ( .0. .<_ X /\ X .<_ P ) <-> ( .0. = X \/ X = P ) ) ) |
19 |
9 14 17 18
|
syl3anc |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( ( .0. .<_ X /\ X .<_ P ) <-> ( .0. = X \/ X = P ) ) ) |
20 |
|
eqcom |
|- ( .0. = X <-> X = .0. ) |
21 |
20
|
orbi1i |
|- ( ( .0. = X \/ X = P ) <-> ( X = .0. \/ X = P ) ) |
22 |
19 21
|
bitrdi |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( ( .0. .<_ X /\ X .<_ P ) <-> ( X = .0. \/ X = P ) ) ) |
23 |
7 22
|
bitrd |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = .0. \/ X = P ) ) ) |
24 |
|
orcom |
|- ( ( X = .0. \/ X = P ) <-> ( X = P \/ X = .0. ) ) |
25 |
23 24
|
bitrdi |
|- ( ( K e. OP /\ X e. B /\ P e. A ) -> ( X .<_ P <-> ( X = P \/ X = .0. ) ) ) |