Step |
Hyp |
Ref |
Expression |
1 |
|
lebnum.j |
|- J = ( MetOpen ` D ) |
2 |
|
lebnum.d |
|- ( ph -> D e. ( Met ` X ) ) |
3 |
|
lebnum.c |
|- ( ph -> J e. Comp ) |
4 |
|
lebnum.s |
|- ( ph -> U C_ J ) |
5 |
|
lebnum.u |
|- ( ph -> X = U. U ) |
6 |
|
lebnumlem1.u |
|- ( ph -> U e. Fin ) |
7 |
|
lebnumlem1.n |
|- ( ph -> -. X e. U ) |
8 |
|
lebnumlem1.f |
|- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
9 |
|
lebnumlem2.k |
|- K = ( topGen ` ran (,) ) |
10 |
|
eqid |
|- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
11 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
12 |
2 11
|
syl |
|- ( ph -> D e. ( *Met ` X ) ) |
13 |
1
|
mopntopon |
|- ( D e. ( *Met ` X ) -> J e. ( TopOn ` X ) ) |
14 |
12 13
|
syl |
|- ( ph -> J e. ( TopOn ` X ) ) |
15 |
2
|
adantr |
|- ( ( ph /\ k e. U ) -> D e. ( Met ` X ) ) |
16 |
|
difssd |
|- ( ( ph /\ k e. U ) -> ( X \ k ) C_ X ) |
17 |
12
|
adantr |
|- ( ( ph /\ k e. U ) -> D e. ( *Met ` X ) ) |
18 |
17 13
|
syl |
|- ( ( ph /\ k e. U ) -> J e. ( TopOn ` X ) ) |
19 |
4
|
sselda |
|- ( ( ph /\ k e. U ) -> k e. J ) |
20 |
|
toponss |
|- ( ( J e. ( TopOn ` X ) /\ k e. J ) -> k C_ X ) |
21 |
18 19 20
|
syl2anc |
|- ( ( ph /\ k e. U ) -> k C_ X ) |
22 |
|
eleq1 |
|- ( k = X -> ( k e. U <-> X e. U ) ) |
23 |
22
|
notbid |
|- ( k = X -> ( -. k e. U <-> -. X e. U ) ) |
24 |
7 23
|
syl5ibrcom |
|- ( ph -> ( k = X -> -. k e. U ) ) |
25 |
24
|
necon2ad |
|- ( ph -> ( k e. U -> k =/= X ) ) |
26 |
25
|
imp |
|- ( ( ph /\ k e. U ) -> k =/= X ) |
27 |
|
pssdifn0 |
|- ( ( k C_ X /\ k =/= X ) -> ( X \ k ) =/= (/) ) |
28 |
21 26 27
|
syl2anc |
|- ( ( ph /\ k e. U ) -> ( X \ k ) =/= (/) ) |
29 |
|
eqid |
|- ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) = ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
30 |
29 1 10
|
metdscn2 |
|- ( ( D e. ( Met ` X ) /\ ( X \ k ) C_ X /\ ( X \ k ) =/= (/) ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
31 |
15 16 28 30
|
syl3anc |
|- ( ( ph /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
32 |
10 14 6 31
|
fsumcn |
|- ( ph -> ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) e. ( J Cn ( TopOpen ` CCfld ) ) ) |
33 |
8 32
|
eqeltrid |
|- ( ph -> F e. ( J Cn ( TopOpen ` CCfld ) ) ) |
34 |
10
|
cnfldtopon |
|- ( TopOpen ` CCfld ) e. ( TopOn ` CC ) |
35 |
34
|
a1i |
|- ( ph -> ( TopOpen ` CCfld ) e. ( TopOn ` CC ) ) |
36 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
|- ( ph -> F : X --> RR+ ) |
37 |
36
|
frnd |
|- ( ph -> ran F C_ RR+ ) |
38 |
|
rpssre |
|- RR+ C_ RR |
39 |
37 38
|
sstrdi |
|- ( ph -> ran F C_ RR ) |
40 |
|
ax-resscn |
|- RR C_ CC |
41 |
40
|
a1i |
|- ( ph -> RR C_ CC ) |
42 |
|
cnrest2 |
|- ( ( ( TopOpen ` CCfld ) e. ( TopOn ` CC ) /\ ran F C_ RR /\ RR C_ CC ) -> ( F e. ( J Cn ( TopOpen ` CCfld ) ) <-> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
43 |
35 39 41 42
|
syl3anc |
|- ( ph -> ( F e. ( J Cn ( TopOpen ` CCfld ) ) <-> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) ) |
44 |
33 43
|
mpbid |
|- ( ph -> F e. ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) ) |
45 |
10
|
tgioo2 |
|- ( topGen ` ran (,) ) = ( ( TopOpen ` CCfld ) |`t RR ) |
46 |
9 45
|
eqtri |
|- K = ( ( TopOpen ` CCfld ) |`t RR ) |
47 |
46
|
oveq2i |
|- ( J Cn K ) = ( J Cn ( ( TopOpen ` CCfld ) |`t RR ) ) |
48 |
44 47
|
eleqtrrdi |
|- ( ph -> F e. ( J Cn K ) ) |