| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lebnum.j |
|- J = ( MetOpen ` D ) |
| 2 |
|
lebnum.d |
|- ( ph -> D e. ( Met ` X ) ) |
| 3 |
|
lebnum.c |
|- ( ph -> J e. Comp ) |
| 4 |
|
lebnum.s |
|- ( ph -> U C_ J ) |
| 5 |
|
lebnum.u |
|- ( ph -> X = U. U ) |
| 6 |
|
lebnumlem1.u |
|- ( ph -> U e. Fin ) |
| 7 |
|
lebnumlem1.n |
|- ( ph -> -. X e. U ) |
| 8 |
|
lebnumlem1.f |
|- F = ( y e. X |-> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
| 9 |
|
lebnumlem2.k |
|- K = ( topGen ` ran (,) ) |
| 10 |
|
1rp |
|- 1 e. RR+ |
| 11 |
10
|
ne0ii |
|- RR+ =/= (/) |
| 12 |
|
ral0 |
|- A. x e. (/) E. u e. U ( x ( ball ` D ) d ) C_ u |
| 13 |
|
simpr |
|- ( ( ph /\ X = (/) ) -> X = (/) ) |
| 14 |
13
|
raleqdv |
|- ( ( ph /\ X = (/) ) -> ( A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u <-> A. x e. (/) E. u e. U ( x ( ball ` D ) d ) C_ u ) ) |
| 15 |
12 14
|
mpbiri |
|- ( ( ph /\ X = (/) ) -> A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 16 |
15
|
ralrimivw |
|- ( ( ph /\ X = (/) ) -> A. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 17 |
|
r19.2z |
|- ( ( RR+ =/= (/) /\ A. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 18 |
11 16 17
|
sylancr |
|- ( ( ph /\ X = (/) ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 19 |
1 2 3 4 5 6 7 8
|
lebnumlem1 |
|- ( ph -> F : X --> RR+ ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> F : X --> RR+ ) |
| 21 |
20
|
frnd |
|- ( ( ph /\ X =/= (/) ) -> ran F C_ RR+ ) |
| 22 |
|
eqid |
|- U. J = U. J |
| 23 |
3
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> J e. Comp ) |
| 24 |
1 2 3 4 5 6 7 8 9
|
lebnumlem2 |
|- ( ph -> F e. ( J Cn K ) ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> F e. ( J Cn K ) ) |
| 26 |
|
metxmet |
|- ( D e. ( Met ` X ) -> D e. ( *Met ` X ) ) |
| 27 |
1
|
mopnuni |
|- ( D e. ( *Met ` X ) -> X = U. J ) |
| 28 |
2 26 27
|
3syl |
|- ( ph -> X = U. J ) |
| 29 |
28
|
neeq1d |
|- ( ph -> ( X =/= (/) <-> U. J =/= (/) ) ) |
| 30 |
29
|
biimpa |
|- ( ( ph /\ X =/= (/) ) -> U. J =/= (/) ) |
| 31 |
22 9 23 25 30
|
evth2 |
|- ( ( ph /\ X =/= (/) ) -> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) |
| 32 |
28
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> X = U. J ) |
| 33 |
|
raleq |
|- ( X = U. J -> ( A. x e. X ( F ` w ) <_ ( F ` x ) <-> A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) |
| 34 |
33
|
rexeqbi1dv |
|- ( X = U. J -> ( E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) <-> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) |
| 35 |
32 34
|
syl |
|- ( ( ph /\ X =/= (/) ) -> ( E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) <-> E. w e. U. J A. x e. U. J ( F ` w ) <_ ( F ` x ) ) ) |
| 36 |
31 35
|
mpbird |
|- ( ( ph /\ X =/= (/) ) -> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) |
| 37 |
|
ffn |
|- ( F : X --> RR+ -> F Fn X ) |
| 38 |
|
breq1 |
|- ( r = ( F ` w ) -> ( r <_ ( F ` x ) <-> ( F ` w ) <_ ( F ` x ) ) ) |
| 39 |
38
|
ralbidv |
|- ( r = ( F ` w ) -> ( A. x e. X r <_ ( F ` x ) <-> A. x e. X ( F ` w ) <_ ( F ` x ) ) ) |
| 40 |
39
|
rexrn |
|- ( F Fn X -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) <-> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) ) |
| 41 |
20 37 40
|
3syl |
|- ( ( ph /\ X =/= (/) ) -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) <-> E. w e. X A. x e. X ( F ` w ) <_ ( F ` x ) ) ) |
| 42 |
36 41
|
mpbird |
|- ( ( ph /\ X =/= (/) ) -> E. r e. ran F A. x e. X r <_ ( F ` x ) ) |
| 43 |
|
ssrexv |
|- ( ran F C_ RR+ -> ( E. r e. ran F A. x e. X r <_ ( F ` x ) -> E. r e. RR+ A. x e. X r <_ ( F ` x ) ) ) |
| 44 |
21 42 43
|
sylc |
|- ( ( ph /\ X =/= (/) ) -> E. r e. RR+ A. x e. X r <_ ( F ` x ) ) |
| 45 |
|
simpr |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> r e. RR+ ) |
| 46 |
5
|
ad2antrr |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> X = U. U ) |
| 47 |
|
simplr |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> X =/= (/) ) |
| 48 |
46 47
|
eqnetrrd |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U. U =/= (/) ) |
| 49 |
|
unieq |
|- ( U = (/) -> U. U = U. (/) ) |
| 50 |
|
uni0 |
|- U. (/) = (/) |
| 51 |
49 50
|
eqtrdi |
|- ( U = (/) -> U. U = (/) ) |
| 52 |
51
|
necon3i |
|- ( U. U =/= (/) -> U =/= (/) ) |
| 53 |
48 52
|
syl |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U =/= (/) ) |
| 54 |
6
|
ad2antrr |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> U e. Fin ) |
| 55 |
|
hashnncl |
|- ( U e. Fin -> ( ( # ` U ) e. NN <-> U =/= (/) ) ) |
| 56 |
54 55
|
syl |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( ( # ` U ) e. NN <-> U =/= (/) ) ) |
| 57 |
53 56
|
mpbird |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( # ` U ) e. NN ) |
| 58 |
57
|
nnrpd |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( # ` U ) e. RR+ ) |
| 59 |
45 58
|
rpdivcld |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( r / ( # ` U ) ) e. RR+ ) |
| 60 |
|
ralnex |
|- ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> -. E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) |
| 61 |
54
|
adantr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> U e. Fin ) |
| 62 |
53
|
adantr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> U =/= (/) ) |
| 63 |
|
simprl |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> x e. X ) |
| 64 |
63
|
adantr |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> x e. X ) |
| 65 |
|
eqid |
|- ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) = ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) |
| 66 |
65
|
metdsval |
|- ( x e. X -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 67 |
64 66
|
syl |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 68 |
2
|
ad2antrr |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> D e. ( Met ` X ) ) |
| 69 |
68
|
ad2antrr |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> D e. ( Met ` X ) ) |
| 70 |
|
difssd |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( X \ k ) C_ X ) |
| 71 |
|
elssuni |
|- ( k e. U -> k C_ U. U ) |
| 72 |
71
|
adantl |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k C_ U. U ) |
| 73 |
46
|
ad2antrr |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> X = U. U ) |
| 74 |
72 73
|
sseqtrrd |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k C_ X ) |
| 75 |
|
eleq1 |
|- ( k = X -> ( k e. U <-> X e. U ) ) |
| 76 |
75
|
notbid |
|- ( k = X -> ( -. k e. U <-> -. X e. U ) ) |
| 77 |
7 76
|
syl5ibrcom |
|- ( ph -> ( k = X -> -. k e. U ) ) |
| 78 |
77
|
necon2ad |
|- ( ph -> ( k e. U -> k =/= X ) ) |
| 79 |
78
|
ad3antrrr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( k e. U -> k =/= X ) ) |
| 80 |
79
|
imp |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> k =/= X ) |
| 81 |
|
pssdifn0 |
|- ( ( k C_ X /\ k =/= X ) -> ( X \ k ) =/= (/) ) |
| 82 |
74 80 81
|
syl2anc |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( X \ k ) =/= (/) ) |
| 83 |
65
|
metdsre |
|- ( ( D e. ( Met ` X ) /\ ( X \ k ) C_ X /\ ( X \ k ) =/= (/) ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) |
| 84 |
69 70 82 83
|
syl3anc |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) : X --> RR ) |
| 85 |
84 64
|
ffvelcdmd |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) e. RR ) |
| 86 |
67 85
|
eqeltrrd |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) e. RR ) |
| 87 |
59
|
ad2antrr |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR+ ) |
| 88 |
87
|
rpred |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR ) |
| 89 |
|
simprr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) |
| 90 |
|
sseq2 |
|- ( u = k -> ( ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 91 |
90
|
notbid |
|- ( u = k -> ( -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u <-> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 92 |
91
|
rspccva |
|- ( ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u /\ k e. U ) -> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) |
| 93 |
89 92
|
sylan |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) |
| 94 |
69 26
|
syl |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> D e. ( *Met ` X ) ) |
| 95 |
87
|
rpxrd |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( r / ( # ` U ) ) e. RR* ) |
| 96 |
65
|
metdsge |
|- ( ( ( D e. ( *Met ` X ) /\ ( X \ k ) C_ X /\ x e. X ) /\ ( r / ( # ` U ) ) e. RR* ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) <-> ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) ) ) |
| 97 |
94 70 64 95 96
|
syl31anc |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) <-> ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) ) ) |
| 98 |
|
blssm |
|- ( ( D e. ( *Met ` X ) /\ x e. X /\ ( r / ( # ` U ) ) e. RR* ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X ) |
| 99 |
94 64 95 98
|
syl3anc |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X ) |
| 100 |
|
difin0ss |
|- ( ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) -> ( ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ X -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 101 |
99 100
|
syl5com |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( ( X \ k ) i^i ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) = (/) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 102 |
97 101
|
sylbid |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) -> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ k ) ) |
| 103 |
93 102
|
mtod |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> -. ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) ) |
| 104 |
85 88
|
ltnled |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) < ( r / ( # ` U ) ) <-> -. ( r / ( # ` U ) ) <_ ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) ) ) |
| 105 |
103 104
|
mpbird |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> ( ( y e. X |-> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) ) ` x ) < ( r / ( # ` U ) ) ) |
| 106 |
67 105
|
eqbrtrrd |
|- ( ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) /\ k e. U ) -> inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) < ( r / ( # ` U ) ) ) |
| 107 |
61 62 86 88 106
|
fsumlt |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) < sum_ k e. U ( r / ( # ` U ) ) ) |
| 108 |
|
oveq1 |
|- ( y = x -> ( y D z ) = ( x D z ) ) |
| 109 |
108
|
mpteq2dv |
|- ( y = x -> ( z e. ( X \ k ) |-> ( y D z ) ) = ( z e. ( X \ k ) |-> ( x D z ) ) ) |
| 110 |
109
|
rneqd |
|- ( y = x -> ran ( z e. ( X \ k ) |-> ( y D z ) ) = ran ( z e. ( X \ k ) |-> ( x D z ) ) ) |
| 111 |
110
|
infeq1d |
|- ( y = x -> inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) = inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 112 |
111
|
sumeq2sdv |
|- ( y = x -> sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( y D z ) ) , RR* , < ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 113 |
|
sumex |
|- sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) e. _V |
| 114 |
112 8 113
|
fvmpt |
|- ( x e. X -> ( F ` x ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 115 |
63 114
|
syl |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) = sum_ k e. U inf ( ran ( z e. ( X \ k ) |-> ( x D z ) ) , RR* , < ) ) |
| 116 |
59
|
adantr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( r / ( # ` U ) ) e. RR+ ) |
| 117 |
116
|
rpcnd |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( r / ( # ` U ) ) e. CC ) |
| 118 |
|
fsumconst |
|- ( ( U e. Fin /\ ( r / ( # ` U ) ) e. CC ) -> sum_ k e. U ( r / ( # ` U ) ) = ( ( # ` U ) x. ( r / ( # ` U ) ) ) ) |
| 119 |
61 117 118
|
syl2anc |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> sum_ k e. U ( r / ( # ` U ) ) = ( ( # ` U ) x. ( r / ( # ` U ) ) ) ) |
| 120 |
|
simplr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. RR+ ) |
| 121 |
120
|
rpcnd |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. CC ) |
| 122 |
57
|
adantr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) e. NN ) |
| 123 |
122
|
nncnd |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) e. CC ) |
| 124 |
122
|
nnne0d |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( # ` U ) =/= 0 ) |
| 125 |
121 123 124
|
divcan2d |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( ( # ` U ) x. ( r / ( # ` U ) ) ) = r ) |
| 126 |
119 125
|
eqtr2d |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r = sum_ k e. U ( r / ( # ` U ) ) ) |
| 127 |
107 115 126
|
3brtr4d |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) < r ) |
| 128 |
20
|
ad2antrr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> F : X --> RR+ ) |
| 129 |
128 63
|
ffvelcdmd |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) e. RR+ ) |
| 130 |
129
|
rpred |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( F ` x ) e. RR ) |
| 131 |
120
|
rpred |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> r e. RR ) |
| 132 |
130 131
|
ltnled |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> ( ( F ` x ) < r <-> -. r <_ ( F ` x ) ) ) |
| 133 |
127 132
|
mpbid |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ ( x e. X /\ A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) -> -. r <_ ( F ` x ) ) |
| 134 |
133
|
expr |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( A. u e. U -. ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u -> -. r <_ ( F ` x ) ) ) |
| 135 |
60 134
|
biimtrrid |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( -. E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u -> -. r <_ ( F ` x ) ) ) |
| 136 |
135
|
con4d |
|- ( ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) /\ x e. X ) -> ( r <_ ( F ` x ) -> E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 137 |
136
|
ralimdva |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( A. x e. X r <_ ( F ` x ) -> A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 138 |
|
oveq2 |
|- ( d = ( r / ( # ` U ) ) -> ( x ( ball ` D ) d ) = ( x ( ball ` D ) ( r / ( # ` U ) ) ) ) |
| 139 |
138
|
sseq1d |
|- ( d = ( r / ( # ` U ) ) -> ( ( x ( ball ` D ) d ) C_ u <-> ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 140 |
139
|
rexbidv |
|- ( d = ( r / ( # ` U ) ) -> ( E. u e. U ( x ( ball ` D ) d ) C_ u <-> E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 141 |
140
|
ralbidv |
|- ( d = ( r / ( # ` U ) ) -> ( A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u <-> A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) ) |
| 142 |
141
|
rspcev |
|- ( ( ( r / ( # ` U ) ) e. RR+ /\ A. x e. X E. u e. U ( x ( ball ` D ) ( r / ( # ` U ) ) ) C_ u ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 143 |
59 137 142
|
syl6an |
|- ( ( ( ph /\ X =/= (/) ) /\ r e. RR+ ) -> ( A. x e. X r <_ ( F ` x ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) ) |
| 144 |
143
|
rexlimdva |
|- ( ( ph /\ X =/= (/) ) -> ( E. r e. RR+ A. x e. X r <_ ( F ` x ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) ) |
| 145 |
44 144
|
mpd |
|- ( ( ph /\ X =/= (/) ) -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |
| 146 |
18 145
|
pm2.61dane |
|- ( ph -> E. d e. RR+ A. x e. X E. u e. U ( x ( ball ` D ) d ) C_ u ) |