Metamath Proof Explorer


Theorem lecasei

Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007)

Ref Expression
Hypotheses lecase.1
|- ( ph -> A e. RR )
lecase.2
|- ( ph -> B e. RR )
lecase.3
|- ( ( ph /\ A <_ B ) -> ps )
lecase.4
|- ( ( ph /\ B <_ A ) -> ps )
Assertion lecasei
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 lecase.1
 |-  ( ph -> A e. RR )
2 lecase.2
 |-  ( ph -> B e. RR )
3 lecase.3
 |-  ( ( ph /\ A <_ B ) -> ps )
4 lecase.4
 |-  ( ( ph /\ B <_ A ) -> ps )
5 letric
 |-  ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B <_ A ) )
6 1 2 5 syl2anc
 |-  ( ph -> ( A <_ B \/ B <_ A ) )
7 3 4 6 mpjaodan
 |-  ( ph -> ps )