Description: Ordering elimination by cases. (Contributed by NM, 6-Jul-2007)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lecase.1 | |- ( ph -> A e. RR ) |
|
| lecase.2 | |- ( ph -> B e. RR ) |
||
| lecase.3 | |- ( ( ph /\ A <_ B ) -> ps ) |
||
| lecase.4 | |- ( ( ph /\ B <_ A ) -> ps ) |
||
| Assertion | lecasei | |- ( ph -> ps ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lecase.1 | |- ( ph -> A e. RR ) |
|
| 2 | lecase.2 | |- ( ph -> B e. RR ) |
|
| 3 | lecase.3 | |- ( ( ph /\ A <_ B ) -> ps ) |
|
| 4 | lecase.4 | |- ( ( ph /\ B <_ A ) -> ps ) |
|
| 5 | letric | |- ( ( A e. RR /\ B e. RR ) -> ( A <_ B \/ B <_ A ) ) |
|
| 6 | 1 2 5 | syl2anc | |- ( ph -> ( A <_ B \/ B <_ A ) ) |
| 7 | 3 4 6 | mpjaodan | |- ( ph -> ps ) |