Step |
Hyp |
Ref |
Expression |
1 |
|
lecmt.b |
|- B = ( Base ` K ) |
2 |
|
lecmt.l |
|- .<_ = ( le ` K ) |
3 |
|
lecmt.c |
|- C = ( cm ` K ) |
4 |
|
omllat |
|- ( K e. OML -> K e. Lat ) |
5 |
4
|
3ad2ant1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. Lat ) |
6 |
|
simp2 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> X e. B ) |
7 |
|
omlop |
|- ( K e. OML -> K e. OP ) |
8 |
7
|
3ad2ant1 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> K e. OP ) |
9 |
|
eqid |
|- ( oc ` K ) = ( oc ` K ) |
10 |
1 9
|
opoccl |
|- ( ( K e. OP /\ X e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
11 |
8 6 10
|
syl2anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( oc ` K ) ` X ) e. B ) |
12 |
|
simp3 |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> Y e. B ) |
13 |
|
eqid |
|- ( join ` K ) = ( join ` K ) |
14 |
1 13
|
latjcl |
|- ( ( K e. Lat /\ ( ( oc ` K ) ` X ) e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) |
15 |
5 11 12 14
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) |
16 |
|
eqid |
|- ( meet ` K ) = ( meet ` K ) |
17 |
1 2 16
|
latmle1 |
|- ( ( K e. Lat /\ X e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) -> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ X ) |
18 |
5 6 15 17
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ X ) |
19 |
1 16
|
latmcl |
|- ( ( K e. Lat /\ X e. B /\ ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) e. B ) -> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) e. B ) |
20 |
5 6 15 19
|
syl3anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) e. B ) |
21 |
1 2
|
lattr |
|- ( ( K e. Lat /\ ( ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) e. B /\ X e. B /\ Y e. B ) ) -> ( ( ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ X /\ X .<_ Y ) -> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ Y ) ) |
22 |
5 20 6 12 21
|
syl13anc |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( ( ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ X /\ X .<_ Y ) -> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ Y ) ) |
23 |
18 22
|
mpand |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ Y ) ) |
24 |
1 2 13 16 9 3
|
cmtbr4N |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X C Y <-> ( X ( meet ` K ) ( ( ( oc ` K ) ` X ) ( join ` K ) Y ) ) .<_ Y ) ) |
25 |
23 24
|
sylibrd |
|- ( ( K e. OML /\ X e. B /\ Y e. B ) -> ( X .<_ Y -> X C Y ) ) |