Metamath Proof Explorer


Theorem ledii

Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 6-Aug-2004) (New usage is discouraged.)

Ref Expression
Hypotheses ledi.1
|- A e. CH
ledi.2
|- B e. CH
ledi.3
|- C e. CH
Assertion ledii
|- ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) )

Proof

Step Hyp Ref Expression
1 ledi.1
 |-  A e. CH
2 ledi.2
 |-  B e. CH
3 ledi.3
 |-  C e. CH
4 inss1
 |-  ( A i^i B ) C_ A
5 inss1
 |-  ( A i^i C ) C_ A
6 1 2 chincli
 |-  ( A i^i B ) e. CH
7 1 3 chincli
 |-  ( A i^i C ) e. CH
8 6 7 1 chlubii
 |-  ( ( ( A i^i B ) C_ A /\ ( A i^i C ) C_ A ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ A )
9 4 5 8 mp2an
 |-  ( ( A i^i B ) vH ( A i^i C ) ) C_ A
10 inss2
 |-  ( A i^i B ) C_ B
11 inss2
 |-  ( A i^i C ) C_ C
12 6 2 7 3 chlej12i
 |-  ( ( ( A i^i B ) C_ B /\ ( A i^i C ) C_ C ) -> ( ( A i^i B ) vH ( A i^i C ) ) C_ ( B vH C ) )
13 10 11 12 mp2an
 |-  ( ( A i^i B ) vH ( A i^i C ) ) C_ ( B vH C )
14 9 13 ssini
 |-  ( ( A i^i B ) vH ( A i^i C ) ) C_ ( A i^i ( B vH C ) )