Metamath Proof Explorer


Theorem lediri

Description: An ortholattice is distributive in one ordering direction. (Contributed by NM, 27-Apr-2006) (New usage is discouraged.)

Ref Expression
Hypotheses ledi.1
|- A e. CH
ledi.2
|- B e. CH
ledi.3
|- C e. CH
Assertion lediri
|- ( ( A i^i C ) vH ( B i^i C ) ) C_ ( ( A vH B ) i^i C )

Proof

Step Hyp Ref Expression
1 ledi.1
 |-  A e. CH
2 ledi.2
 |-  B e. CH
3 ledi.3
 |-  C e. CH
4 3 1 2 ledii
 |-  ( ( C i^i A ) vH ( C i^i B ) ) C_ ( C i^i ( A vH B ) )
5 incom
 |-  ( A i^i C ) = ( C i^i A )
6 incom
 |-  ( B i^i C ) = ( C i^i B )
7 5 6 oveq12i
 |-  ( ( A i^i C ) vH ( B i^i C ) ) = ( ( C i^i A ) vH ( C i^i B ) )
8 incom
 |-  ( ( A vH B ) i^i C ) = ( C i^i ( A vH B ) )
9 4 7 8 3sstr4i
 |-  ( ( A i^i C ) vH ( B i^i C ) ) C_ ( ( A vH B ) i^i C )