| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltdiv1 |
|- ( ( B e. RR /\ A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A <-> ( B / C ) < ( A / C ) ) ) |
| 2 |
1
|
3com12 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B < A <-> ( B / C ) < ( A / C ) ) ) |
| 3 |
2
|
notbid |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( -. B < A <-> -. ( B / C ) < ( A / C ) ) ) |
| 4 |
|
lenlt |
|- ( ( A e. RR /\ B e. RR ) -> ( A <_ B <-> -. B < A ) ) |
| 5 |
4
|
3adant3 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> -. B < A ) ) |
| 6 |
|
gt0ne0 |
|- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
| 7 |
6
|
3adant1 |
|- ( ( A e. RR /\ C e. RR /\ 0 < C ) -> C =/= 0 ) |
| 8 |
|
redivcl |
|- ( ( A e. RR /\ C e. RR /\ C =/= 0 ) -> ( A / C ) e. RR ) |
| 9 |
7 8
|
syld3an3 |
|- ( ( A e. RR /\ C e. RR /\ 0 < C ) -> ( A / C ) e. RR ) |
| 10 |
9
|
3expb |
|- ( ( A e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A / C ) e. RR ) |
| 11 |
10
|
3adant2 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A / C ) e. RR ) |
| 12 |
6
|
3adant1 |
|- ( ( B e. RR /\ C e. RR /\ 0 < C ) -> C =/= 0 ) |
| 13 |
|
redivcl |
|- ( ( B e. RR /\ C e. RR /\ C =/= 0 ) -> ( B / C ) e. RR ) |
| 14 |
12 13
|
syld3an3 |
|- ( ( B e. RR /\ C e. RR /\ 0 < C ) -> ( B / C ) e. RR ) |
| 15 |
14
|
3expb |
|- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) e. RR ) |
| 16 |
15
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B / C ) e. RR ) |
| 17 |
11 16
|
lenltd |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ ( B / C ) <-> -. ( B / C ) < ( A / C ) ) ) |
| 18 |
3 5 17
|
3bitr4d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( A / C ) <_ ( B / C ) ) ) |