| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gt0ne0 |
|- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
| 2 |
|
rereccl |
|- ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) |
| 3 |
1 2
|
syldan |
|- ( ( B e. RR /\ 0 < B ) -> ( 1 / B ) e. RR ) |
| 4 |
3
|
3ad2ant2 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( 1 / B ) e. RR ) |
| 5 |
|
gt0ne0 |
|- ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) |
| 6 |
|
rereccl |
|- ( ( A e. RR /\ A =/= 0 ) -> ( 1 / A ) e. RR ) |
| 7 |
5 6
|
syldan |
|- ( ( A e. RR /\ 0 < A ) -> ( 1 / A ) e. RR ) |
| 8 |
7
|
3ad2ant1 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( 1 / A ) e. RR ) |
| 9 |
|
simp3l |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> C e. RR ) |
| 10 |
|
simp3r |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> 0 < C ) |
| 11 |
|
lemul2 |
|- ( ( ( 1 / B ) e. RR /\ ( 1 / A ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) <_ ( 1 / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 12 |
4 8 9 10 11
|
syl112anc |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( 1 / B ) <_ ( 1 / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 13 |
|
lerec |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
| 14 |
13
|
3adant3 |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( 1 / B ) <_ ( 1 / A ) ) ) |
| 15 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 16 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 17 |
16
|
adantr |
|- ( ( B e. RR /\ 0 < B ) -> B e. CC ) |
| 18 |
17 1
|
jca |
|- ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) |
| 19 |
|
divrec |
|- ( ( C e. CC /\ B e. CC /\ B =/= 0 ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 20 |
19
|
3expb |
|- ( ( C e. CC /\ ( B e. CC /\ B =/= 0 ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 21 |
15 18 20
|
syl2an |
|- ( ( C e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 22 |
21
|
3adant2 |
|- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( C / B ) = ( C x. ( 1 / B ) ) ) |
| 23 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 24 |
23
|
adantr |
|- ( ( A e. RR /\ 0 < A ) -> A e. CC ) |
| 25 |
24 5
|
jca |
|- ( ( A e. RR /\ 0 < A ) -> ( A e. CC /\ A =/= 0 ) ) |
| 26 |
|
divrec |
|- ( ( C e. CC /\ A e. CC /\ A =/= 0 ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 27 |
26
|
3expb |
|- ( ( C e. CC /\ ( A e. CC /\ A =/= 0 ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 28 |
15 25 27
|
syl2an |
|- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 29 |
28
|
3adant3 |
|- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( C / A ) = ( C x. ( 1 / A ) ) ) |
| 30 |
22 29
|
breq12d |
|- ( ( C e. RR /\ ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( C / B ) <_ ( C / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 31 |
30
|
3coml |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ C e. RR ) -> ( ( C / B ) <_ ( C / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 32 |
31
|
3adant3r |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( C / B ) <_ ( C / A ) <-> ( C x. ( 1 / B ) ) <_ ( C x. ( 1 / A ) ) ) ) |
| 33 |
12 14 32
|
3bitr4d |
|- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( C / B ) <_ ( C / A ) ) ) |