Description: Swap denominator with other side of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ltdiv23d.1 | |- ( ph -> A e. RR ) | |
| ltdiv23d.2 | |- ( ph -> B e. RR+ ) | ||
| ltdiv23d.3 | |- ( ph -> C e. RR+ ) | ||
| lediv23d.4 | |- ( ph -> ( A / B ) <_ C ) | ||
| Assertion | lediv23d | |- ( ph -> ( A / C ) <_ B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ltdiv23d.1 | |- ( ph -> A e. RR ) | |
| 2 | ltdiv23d.2 | |- ( ph -> B e. RR+ ) | |
| 3 | ltdiv23d.3 | |- ( ph -> C e. RR+ ) | |
| 4 | lediv23d.4 | |- ( ph -> ( A / B ) <_ C ) | |
| 5 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) | 
| 6 | 3 | rpregt0d | |- ( ph -> ( C e. RR /\ 0 < C ) ) | 
| 7 | lediv23 | |- ( ( A e. RR /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / B ) <_ C <-> ( A / C ) <_ B ) ) | |
| 8 | 1 5 6 7 | syl3anc | |- ( ph -> ( ( A / B ) <_ C <-> ( A / C ) <_ B ) ) | 
| 9 | 4 8 | mpbid | |- ( ph -> ( A / C ) <_ B ) |