Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
lediv2ad.3 | |- ( ph -> C e. RR ) |
||
lediv2ad.4 | |- ( ph -> 0 <_ C ) |
||
lediv2ad.5 | |- ( ph -> A <_ B ) |
||
Assertion | lediv2ad | |- ( ph -> ( C / B ) <_ ( C / A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
3 | lediv2ad.3 | |- ( ph -> C e. RR ) |
|
4 | lediv2ad.4 | |- ( ph -> 0 <_ C ) |
|
5 | lediv2ad.5 | |- ( ph -> A <_ B ) |
|
6 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
7 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
8 | 3 4 | jca | |- ( ph -> ( C e. RR /\ 0 <_ C ) ) |
9 | lediv2a | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C / B ) <_ ( C / A ) ) |
|
10 | 6 7 8 5 9 | syl31anc | |- ( ph -> ( C / B ) <_ ( C / A ) ) |