Metamath Proof Explorer


Theorem lediv2ad

Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses rpred.1
|- ( ph -> A e. RR+ )
rpaddcld.1
|- ( ph -> B e. RR+ )
lediv2ad.3
|- ( ph -> C e. RR )
lediv2ad.4
|- ( ph -> 0 <_ C )
lediv2ad.5
|- ( ph -> A <_ B )
Assertion lediv2ad
|- ( ph -> ( C / B ) <_ ( C / A ) )

Proof

Step Hyp Ref Expression
1 rpred.1
 |-  ( ph -> A e. RR+ )
2 rpaddcld.1
 |-  ( ph -> B e. RR+ )
3 lediv2ad.3
 |-  ( ph -> C e. RR )
4 lediv2ad.4
 |-  ( ph -> 0 <_ C )
5 lediv2ad.5
 |-  ( ph -> A <_ B )
6 1 rpregt0d
 |-  ( ph -> ( A e. RR /\ 0 < A ) )
7 2 rpregt0d
 |-  ( ph -> ( B e. RR /\ 0 < B ) )
8 3 4 jca
 |-  ( ph -> ( C e. RR /\ 0 <_ C ) )
9 lediv2a
 |-  ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C / B ) <_ ( C / A ) )
10 6 7 8 5 9 syl31anc
 |-  ( ph -> ( C / B ) <_ ( C / A ) )