Description: Division of both sides of 'less than or equal to' into a nonnegative number. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
| lediv2ad.3 | |- ( ph -> C e. RR ) |
||
| lediv2ad.4 | |- ( ph -> 0 <_ C ) |
||
| lediv2ad.5 | |- ( ph -> A <_ B ) |
||
| Assertion | lediv2ad | |- ( ph -> ( C / B ) <_ ( C / A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
| 3 | lediv2ad.3 | |- ( ph -> C e. RR ) |
|
| 4 | lediv2ad.4 | |- ( ph -> 0 <_ C ) |
|
| 5 | lediv2ad.5 | |- ( ph -> A <_ B ) |
|
| 6 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
| 7 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
| 8 | 3 4 | jca | |- ( ph -> ( C e. RR /\ 0 <_ C ) ) |
| 9 | lediv2a | |- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 <_ C ) ) /\ A <_ B ) -> ( C / B ) <_ ( C / A ) ) |
|
| 10 | 6 7 8 5 9 | syl31anc | |- ( ph -> ( C / B ) <_ ( C / A ) ) |