Description: Division of a positive number by both sides of 'less than or equal to'. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | rpred.1 | |- ( ph -> A e. RR+ ) |
|
rpaddcld.1 | |- ( ph -> B e. RR+ ) |
||
ltdiv2d.3 | |- ( ph -> C e. RR+ ) |
||
Assertion | lediv2d | |- ( ph -> ( A <_ B <-> ( C / B ) <_ ( C / A ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rpred.1 | |- ( ph -> A e. RR+ ) |
|
2 | rpaddcld.1 | |- ( ph -> B e. RR+ ) |
|
3 | ltdiv2d.3 | |- ( ph -> C e. RR+ ) |
|
4 | 1 | rpregt0d | |- ( ph -> ( A e. RR /\ 0 < A ) ) |
5 | 2 | rpregt0d | |- ( ph -> ( B e. RR /\ 0 < B ) ) |
6 | 3 | rpregt0d | |- ( ph -> ( C e. RR /\ 0 < C ) ) |
7 | lediv2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ B <-> ( C / B ) <_ ( C / A ) ) ) |
|
8 | 4 5 6 7 | syl3anc | |- ( ph -> ( A <_ B <-> ( C / B ) <_ ( C / A ) ) ) |