| Step | Hyp | Ref | Expression | 
						
							| 1 |  | simpl |  |-  ( ( B e. RR /\ 0 < B ) -> B e. RR ) | 
						
							| 2 |  | gt0ne0 |  |-  ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) | 
						
							| 3 | 1 2 | jca |  |-  ( ( B e. RR /\ 0 < B ) -> ( B e. RR /\ B =/= 0 ) ) | 
						
							| 4 |  | redivcl |  |-  ( ( A e. RR /\ B e. RR /\ B =/= 0 ) -> ( A / B ) e. RR ) | 
						
							| 5 | 4 | 3expb |  |-  ( ( A e. RR /\ ( B e. RR /\ B =/= 0 ) ) -> ( A / B ) e. RR ) | 
						
							| 6 | 3 5 | sylan2 |  |-  ( ( A e. RR /\ ( B e. RR /\ 0 < B ) ) -> ( A / B ) e. RR ) | 
						
							| 7 | 6 | adantlr |  |-  ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A / B ) e. RR ) | 
						
							| 8 |  | divgt0 |  |-  ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> 0 < ( A / B ) ) | 
						
							| 9 | 7 8 | jca |  |-  ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / B ) e. RR /\ 0 < ( A / B ) ) ) | 
						
							| 10 |  | simpl |  |-  ( ( D e. RR /\ 0 < D ) -> D e. RR ) | 
						
							| 11 |  | gt0ne0 |  |-  ( ( D e. RR /\ 0 < D ) -> D =/= 0 ) | 
						
							| 12 | 10 11 | jca |  |-  ( ( D e. RR /\ 0 < D ) -> ( D e. RR /\ D =/= 0 ) ) | 
						
							| 13 |  | redivcl |  |-  ( ( C e. RR /\ D e. RR /\ D =/= 0 ) -> ( C / D ) e. RR ) | 
						
							| 14 | 13 | 3expb |  |-  ( ( C e. RR /\ ( D e. RR /\ D =/= 0 ) ) -> ( C / D ) e. RR ) | 
						
							| 15 | 12 14 | sylan2 |  |-  ( ( C e. RR /\ ( D e. RR /\ 0 < D ) ) -> ( C / D ) e. RR ) | 
						
							| 16 | 15 | adantlr |  |-  ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> ( C / D ) e. RR ) | 
						
							| 17 |  | divgt0 |  |-  ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> 0 < ( C / D ) ) | 
						
							| 18 | 16 17 | jca |  |-  ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> ( ( C / D ) e. RR /\ 0 < ( C / D ) ) ) | 
						
							| 19 |  | lerec |  |-  ( ( ( ( A / B ) e. RR /\ 0 < ( A / B ) ) /\ ( ( C / D ) e. RR /\ 0 < ( C / D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( 1 / ( C / D ) ) <_ ( 1 / ( A / B ) ) ) ) | 
						
							| 20 | 9 18 19 | syl2an |  |-  ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( 1 / ( C / D ) ) <_ ( 1 / ( A / B ) ) ) ) | 
						
							| 21 |  | recn |  |-  ( C e. RR -> C e. CC ) | 
						
							| 22 | 21 | adantr |  |-  ( ( C e. RR /\ 0 < C ) -> C e. CC ) | 
						
							| 23 |  | gt0ne0 |  |-  ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) | 
						
							| 24 | 22 23 | jca |  |-  ( ( C e. RR /\ 0 < C ) -> ( C e. CC /\ C =/= 0 ) ) | 
						
							| 25 |  | recn |  |-  ( D e. RR -> D e. CC ) | 
						
							| 26 | 25 | adantr |  |-  ( ( D e. RR /\ 0 < D ) -> D e. CC ) | 
						
							| 27 | 26 11 | jca |  |-  ( ( D e. RR /\ 0 < D ) -> ( D e. CC /\ D =/= 0 ) ) | 
						
							| 28 |  | recdiv |  |-  ( ( ( C e. CC /\ C =/= 0 ) /\ ( D e. CC /\ D =/= 0 ) ) -> ( 1 / ( C / D ) ) = ( D / C ) ) | 
						
							| 29 | 24 27 28 | syl2an |  |-  ( ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) -> ( 1 / ( C / D ) ) = ( D / C ) ) | 
						
							| 30 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 31 | 30 | adantr |  |-  ( ( A e. RR /\ 0 < A ) -> A e. CC ) | 
						
							| 32 |  | gt0ne0 |  |-  ( ( A e. RR /\ 0 < A ) -> A =/= 0 ) | 
						
							| 33 | 31 32 | jca |  |-  ( ( A e. RR /\ 0 < A ) -> ( A e. CC /\ A =/= 0 ) ) | 
						
							| 34 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 35 | 34 | adantr |  |-  ( ( B e. RR /\ 0 < B ) -> B e. CC ) | 
						
							| 36 | 35 2 | jca |  |-  ( ( B e. RR /\ 0 < B ) -> ( B e. CC /\ B =/= 0 ) ) | 
						
							| 37 |  | recdiv |  |-  ( ( ( A e. CC /\ A =/= 0 ) /\ ( B e. CC /\ B =/= 0 ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) | 
						
							| 38 | 33 36 37 | syl2an |  |-  ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / ( A / B ) ) = ( B / A ) ) | 
						
							| 39 | 29 38 | breqan12rd |  |-  ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( 1 / ( C / D ) ) <_ ( 1 / ( A / B ) ) <-> ( D / C ) <_ ( B / A ) ) ) | 
						
							| 40 | 20 39 | bitrd |  |-  ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( D / C ) <_ ( B / A ) ) ) |