Step |
Hyp |
Ref |
Expression |
1 |
|
rpred.1 |
|- ( ph -> A e. RR+ ) |
2 |
|
rpaddcld.1 |
|- ( ph -> B e. RR+ ) |
3 |
|
ltdiv2d.3 |
|- ( ph -> C e. RR+ ) |
4 |
|
ledivdivd.4 |
|- ( ph -> D e. RR+ ) |
5 |
|
ledivdivd.5 |
|- ( ph -> ( A / B ) <_ ( C / D ) ) |
6 |
1
|
rpregt0d |
|- ( ph -> ( A e. RR /\ 0 < A ) ) |
7 |
2
|
rpregt0d |
|- ( ph -> ( B e. RR /\ 0 < B ) ) |
8 |
3
|
rpregt0d |
|- ( ph -> ( C e. RR /\ 0 < C ) ) |
9 |
4
|
rpregt0d |
|- ( ph -> ( D e. RR /\ 0 < D ) ) |
10 |
|
ledivdiv |
|- ( ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) /\ ( ( C e. RR /\ 0 < C ) /\ ( D e. RR /\ 0 < D ) ) ) -> ( ( A / B ) <_ ( C / D ) <-> ( D / C ) <_ ( B / A ) ) ) |
11 |
6 7 8 9 10
|
syl22anc |
|- ( ph -> ( ( A / B ) <_ ( C / D ) <-> ( D / C ) <_ ( B / A ) ) ) |
12 |
5 11
|
mpbid |
|- ( ph -> ( D / C ) <_ ( B / A ) ) |