| Step | Hyp | Ref | Expression | 
						
							| 1 |  | divle1le |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) | 
						
							| 2 | 1 | adantr |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) | 
						
							| 3 |  | rerpdivcl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( A / B ) e. RR ) | 
						
							| 5 |  | 1red |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> 1 e. RR ) | 
						
							| 6 |  | rpre |  |-  ( C e. RR+ -> C e. RR ) | 
						
							| 7 | 6 | adantl |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> C e. RR ) | 
						
							| 8 |  | letr |  |-  ( ( ( A / B ) e. RR /\ 1 e. RR /\ C e. RR ) -> ( ( ( A / B ) <_ 1 /\ 1 <_ C ) -> ( A / B ) <_ C ) ) | 
						
							| 9 | 4 5 7 8 | syl3anc |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( ( A / B ) <_ 1 /\ 1 <_ C ) -> ( A / B ) <_ C ) ) | 
						
							| 10 | 9 | expd |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( A / B ) <_ 1 -> ( 1 <_ C -> ( A / B ) <_ C ) ) ) | 
						
							| 11 | 2 10 | sylbird |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( A <_ B -> ( 1 <_ C -> ( A / B ) <_ C ) ) ) | 
						
							| 12 | 11 | com23 |  |-  ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( 1 <_ C -> ( A <_ B -> ( A / B ) <_ C ) ) ) | 
						
							| 13 | 12 | expimpd |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( C e. RR+ /\ 1 <_ C ) -> ( A <_ B -> ( A / B ) <_ C ) ) ) | 
						
							| 14 | 13 | ex |  |-  ( A e. RR -> ( B e. RR+ -> ( ( C e. RR+ /\ 1 <_ C ) -> ( A <_ B -> ( A / B ) <_ C ) ) ) ) | 
						
							| 15 | 14 | 3imp1 |  |-  ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A / B ) <_ C ) | 
						
							| 16 |  | simp1 |  |-  ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> A e. RR ) | 
						
							| 17 | 6 | adantr |  |-  ( ( C e. RR+ /\ 1 <_ C ) -> C e. RR ) | 
						
							| 18 |  | 0lt1 |  |-  0 < 1 | 
						
							| 19 |  | 0red |  |-  ( C e. RR+ -> 0 e. RR ) | 
						
							| 20 |  | 1red |  |-  ( C e. RR+ -> 1 e. RR ) | 
						
							| 21 |  | ltletr |  |-  ( ( 0 e. RR /\ 1 e. RR /\ C e. RR ) -> ( ( 0 < 1 /\ 1 <_ C ) -> 0 < C ) ) | 
						
							| 22 | 19 20 6 21 | syl3anc |  |-  ( C e. RR+ -> ( ( 0 < 1 /\ 1 <_ C ) -> 0 < C ) ) | 
						
							| 23 | 18 22 | mpani |  |-  ( C e. RR+ -> ( 1 <_ C -> 0 < C ) ) | 
						
							| 24 | 23 | imp |  |-  ( ( C e. RR+ /\ 1 <_ C ) -> 0 < C ) | 
						
							| 25 | 17 24 | jca |  |-  ( ( C e. RR+ /\ 1 <_ C ) -> ( C e. RR /\ 0 < C ) ) | 
						
							| 26 | 25 | 3ad2ant3 |  |-  ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( C e. RR /\ 0 < C ) ) | 
						
							| 27 |  | rpregt0 |  |-  ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) | 
						
							| 28 | 27 | 3ad2ant2 |  |-  ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( B e. RR /\ 0 < B ) ) | 
						
							| 29 | 16 26 28 | 3jca |  |-  ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) ) | 
						
							| 30 | 29 | adantr |  |-  ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) ) | 
						
							| 31 |  | lediv23 |  |-  ( ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / C ) <_ B <-> ( A / B ) <_ C ) ) | 
						
							| 32 | 30 31 | syl |  |-  ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( ( A / C ) <_ B <-> ( A / B ) <_ C ) ) | 
						
							| 33 | 15 32 | mpbird |  |-  ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A / C ) <_ B ) | 
						
							| 34 | 33 | ex |  |-  ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( A <_ B -> ( A / C ) <_ B ) ) |