| Step |
Hyp |
Ref |
Expression |
| 1 |
|
divle1le |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) |
| 2 |
1
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( A / B ) <_ 1 <-> A <_ B ) ) |
| 3 |
|
rerpdivcl |
|- ( ( A e. RR /\ B e. RR+ ) -> ( A / B ) e. RR ) |
| 4 |
3
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( A / B ) e. RR ) |
| 5 |
|
1red |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> 1 e. RR ) |
| 6 |
|
rpre |
|- ( C e. RR+ -> C e. RR ) |
| 7 |
6
|
adantl |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> C e. RR ) |
| 8 |
|
letr |
|- ( ( ( A / B ) e. RR /\ 1 e. RR /\ C e. RR ) -> ( ( ( A / B ) <_ 1 /\ 1 <_ C ) -> ( A / B ) <_ C ) ) |
| 9 |
4 5 7 8
|
syl3anc |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( ( A / B ) <_ 1 /\ 1 <_ C ) -> ( A / B ) <_ C ) ) |
| 10 |
9
|
expd |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( ( A / B ) <_ 1 -> ( 1 <_ C -> ( A / B ) <_ C ) ) ) |
| 11 |
2 10
|
sylbird |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( A <_ B -> ( 1 <_ C -> ( A / B ) <_ C ) ) ) |
| 12 |
11
|
com23 |
|- ( ( ( A e. RR /\ B e. RR+ ) /\ C e. RR+ ) -> ( 1 <_ C -> ( A <_ B -> ( A / B ) <_ C ) ) ) |
| 13 |
12
|
expimpd |
|- ( ( A e. RR /\ B e. RR+ ) -> ( ( C e. RR+ /\ 1 <_ C ) -> ( A <_ B -> ( A / B ) <_ C ) ) ) |
| 14 |
13
|
ex |
|- ( A e. RR -> ( B e. RR+ -> ( ( C e. RR+ /\ 1 <_ C ) -> ( A <_ B -> ( A / B ) <_ C ) ) ) ) |
| 15 |
14
|
3imp1 |
|- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A / B ) <_ C ) |
| 16 |
|
simp1 |
|- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> A e. RR ) |
| 17 |
6
|
adantr |
|- ( ( C e. RR+ /\ 1 <_ C ) -> C e. RR ) |
| 18 |
|
0lt1 |
|- 0 < 1 |
| 19 |
|
0red |
|- ( C e. RR+ -> 0 e. RR ) |
| 20 |
|
1red |
|- ( C e. RR+ -> 1 e. RR ) |
| 21 |
|
ltletr |
|- ( ( 0 e. RR /\ 1 e. RR /\ C e. RR ) -> ( ( 0 < 1 /\ 1 <_ C ) -> 0 < C ) ) |
| 22 |
19 20 6 21
|
syl3anc |
|- ( C e. RR+ -> ( ( 0 < 1 /\ 1 <_ C ) -> 0 < C ) ) |
| 23 |
18 22
|
mpani |
|- ( C e. RR+ -> ( 1 <_ C -> 0 < C ) ) |
| 24 |
23
|
imp |
|- ( ( C e. RR+ /\ 1 <_ C ) -> 0 < C ) |
| 25 |
17 24
|
jca |
|- ( ( C e. RR+ /\ 1 <_ C ) -> ( C e. RR /\ 0 < C ) ) |
| 26 |
25
|
3ad2ant3 |
|- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( C e. RR /\ 0 < C ) ) |
| 27 |
|
rpregt0 |
|- ( B e. RR+ -> ( B e. RR /\ 0 < B ) ) |
| 28 |
27
|
3ad2ant2 |
|- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( B e. RR /\ 0 < B ) ) |
| 29 |
16 26 28
|
3jca |
|- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) ) |
| 30 |
29
|
adantr |
|- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) ) |
| 31 |
|
lediv23 |
|- ( ( A e. RR /\ ( C e. RR /\ 0 < C ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( A / C ) <_ B <-> ( A / B ) <_ C ) ) |
| 32 |
30 31
|
syl |
|- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( ( A / C ) <_ B <-> ( A / B ) <_ C ) ) |
| 33 |
15 32
|
mpbird |
|- ( ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) /\ A <_ B ) -> ( A / C ) <_ B ) |
| 34 |
33
|
ex |
|- ( ( A e. RR /\ B e. RR+ /\ ( C e. RR+ /\ 1 <_ C ) ) -> ( A <_ B -> ( A / C ) <_ B ) ) |