| Step |
Hyp |
Ref |
Expression |
| 1 |
|
remulcl |
|- ( ( C e. RR /\ B e. RR ) -> ( C x. B ) e. RR ) |
| 2 |
1
|
ancoms |
|- ( ( B e. RR /\ C e. RR ) -> ( C x. B ) e. RR ) |
| 3 |
2
|
adantrr |
|- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( C x. B ) e. RR ) |
| 4 |
3
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( C x. B ) e. RR ) |
| 5 |
|
lediv1 |
|- ( ( A e. RR /\ ( C x. B ) e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ ( ( C x. B ) / C ) ) ) |
| 6 |
4 5
|
syld3an2 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( C x. B ) <-> ( A / C ) <_ ( ( C x. B ) / C ) ) ) |
| 7 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 8 |
7
|
adantr |
|- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> B e. CC ) |
| 9 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 10 |
9
|
ad2antrl |
|- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C e. CC ) |
| 11 |
|
gt0ne0 |
|- ( ( C e. RR /\ 0 < C ) -> C =/= 0 ) |
| 12 |
11
|
adantl |
|- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> C =/= 0 ) |
| 13 |
8 10 12
|
divcan3d |
|- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. B ) / C ) = B ) |
| 14 |
13
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( C x. B ) / C ) = B ) |
| 15 |
14
|
breq2d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ ( ( C x. B ) / C ) <-> ( A / C ) <_ B ) ) |
| 16 |
6 15
|
bitr2d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( C x. B ) ) ) |