| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ledivmul |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( C x. B ) ) ) |
| 2 |
|
recn |
|- ( B e. RR -> B e. CC ) |
| 3 |
|
recn |
|- ( C e. RR -> C e. CC ) |
| 4 |
|
mulcom |
|- ( ( B e. CC /\ C e. CC ) -> ( B x. C ) = ( C x. B ) ) |
| 5 |
2 3 4
|
syl2an |
|- ( ( B e. RR /\ C e. RR ) -> ( B x. C ) = ( C x. B ) ) |
| 6 |
5
|
adantrr |
|- ( ( B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B x. C ) = ( C x. B ) ) |
| 7 |
6
|
3adant1 |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( B x. C ) = ( C x. B ) ) |
| 8 |
7
|
breq2d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( A <_ ( B x. C ) <-> A <_ ( C x. B ) ) ) |
| 9 |
1 8
|
bitr4d |
|- ( ( A e. RR /\ B e. RR /\ ( C e. RR /\ 0 < C ) ) -> ( ( A / C ) <_ B <-> A <_ ( B x. C ) ) ) |