Metamath Proof Explorer


Theorem leex

Description: The less-than-or-equal-to relation is a set. (Contributed by SN, 5-Jun-2025)

Ref Expression
Assertion leex
|- <_ e. _V

Proof

Step Hyp Ref Expression
1 xrex
 |-  RR* e. _V
2 1 1 xpex
 |-  ( RR* X. RR* ) e. _V
3 lerelxr
 |-  <_ C_ ( RR* X. RR* )
4 2 3 ssexi
 |-  <_ e. _V