Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqgt0d.1 | |- ( ph -> A e. RR ) |
|
| leexp2ad.2 | |- ( ph -> 1 <_ A ) |
||
| leexp2ad.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| Assertion | leexp2ad | |- ( ph -> ( A ^ M ) <_ ( A ^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0d.1 | |- ( ph -> A e. RR ) |
|
| 2 | leexp2ad.2 | |- ( ph -> 1 <_ A ) |
|
| 3 | leexp2ad.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | leexp2a | |- ( ( A e. RR /\ 1 <_ A /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) <_ ( A ^ N ) ) |
|
| 5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A ^ M ) <_ ( A ^ N ) ) |