Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqcld.1 | |- ( ph -> A e. RR ) |
|
leexp2ad.2 | |- ( ph -> 1 <_ A ) |
||
leexp2ad.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
Assertion | leexp2ad | |- ( ph -> ( A ^ M ) <_ ( A ^ N ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcld.1 | |- ( ph -> A e. RR ) |
|
2 | leexp2ad.2 | |- ( ph -> 1 <_ A ) |
|
3 | leexp2ad.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
4 | leexp2a | |- ( ( A e. RR /\ 1 <_ A /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) <_ ( A ^ N ) ) |
|
5 | 1 2 3 4 | syl3anc | |- ( ph -> ( A ^ M ) <_ ( A ^ N ) ) |