Metamath Proof Explorer


Theorem leexp2ad

Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)

Ref Expression
Hypotheses resqcld.1
|- ( ph -> A e. RR )
leexp2ad.2
|- ( ph -> 1 <_ A )
leexp2ad.3
|- ( ph -> N e. ( ZZ>= ` M ) )
Assertion leexp2ad
|- ( ph -> ( A ^ M ) <_ ( A ^ N ) )

Proof

Step Hyp Ref Expression
1 resqcld.1
 |-  ( ph -> A e. RR )
2 leexp2ad.2
 |-  ( ph -> 1 <_ A )
3 leexp2ad.3
 |-  ( ph -> N e. ( ZZ>= ` M ) )
4 leexp2a
 |-  ( ( A e. RR /\ 1 <_ A /\ N e. ( ZZ>= ` M ) ) -> ( A ^ M ) <_ ( A ^ N ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A ^ M ) <_ ( A ^ N ) )