Description: Ordering law for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | resqcld.1 | |- ( ph -> A e. RR ) |
|
ltexp2d.2 | |- ( ph -> M e. ZZ ) |
||
ltexp2d.3 | |- ( ph -> N e. ZZ ) |
||
ltexp2d.4 | |- ( ph -> 1 < A ) |
||
Assertion | leexp2d | |- ( ph -> ( M <_ N <-> ( A ^ M ) <_ ( A ^ N ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resqcld.1 | |- ( ph -> A e. RR ) |
|
2 | ltexp2d.2 | |- ( ph -> M e. ZZ ) |
|
3 | ltexp2d.3 | |- ( ph -> N e. ZZ ) |
|
4 | ltexp2d.4 | |- ( ph -> 1 < A ) |
|
5 | leexp2 | |- ( ( ( A e. RR /\ M e. ZZ /\ N e. ZZ ) /\ 1 < A ) -> ( M <_ N <-> ( A ^ M ) <_ ( A ^ N ) ) ) |
|
6 | 1 2 3 4 5 | syl31anc | |- ( ph -> ( M <_ N <-> ( A ^ M ) <_ ( A ^ N ) ) ) |