Description: Ordering relationship for exponentiation. (Contributed by Mario Carneiro, 28-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sqgt0d.1 | |- ( ph -> A e. RR ) |
|
| leexp2rd.2 | |- ( ph -> M e. NN0 ) |
||
| leexp2rd.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
||
| leexp2rd.4 | |- ( ph -> 0 <_ A ) |
||
| leexp2rd.5 | |- ( ph -> A <_ 1 ) |
||
| Assertion | leexp2rd | |- ( ph -> ( A ^ N ) <_ ( A ^ M ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sqgt0d.1 | |- ( ph -> A e. RR ) |
|
| 2 | leexp2rd.2 | |- ( ph -> M e. NN0 ) |
|
| 3 | leexp2rd.3 | |- ( ph -> N e. ( ZZ>= ` M ) ) |
|
| 4 | leexp2rd.4 | |- ( ph -> 0 <_ A ) |
|
| 5 | leexp2rd.5 | |- ( ph -> A <_ 1 ) |
|
| 6 | leexp2r | |- ( ( ( A e. RR /\ M e. NN0 /\ N e. ( ZZ>= ` M ) ) /\ ( 0 <_ A /\ A <_ 1 ) ) -> ( A ^ N ) <_ ( A ^ M ) ) |
|
| 7 | 1 2 3 4 5 6 | syl32anc | |- ( ph -> ( A ^ N ) <_ ( A ^ M ) ) |