Description: The field of the 'less or equal to' relationship on the extended real. (Contributed by FL, 2-Aug-2009) (Revised by Mario Carneiro, 4-May-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | lefld | |- RR* = U. U. <_ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lerel | |- Rel <_ |
|
2 | relfld | |- ( Rel <_ -> U. U. <_ = ( dom <_ u. ran <_ ) ) |
|
3 | 1 2 | ax-mp | |- U. U. <_ = ( dom <_ u. ran <_ ) |
4 | ledm | |- RR* = dom <_ |
|
5 | lern | |- RR* = ran <_ |
|
6 | 4 5 | uneq12i | |- ( RR* u. RR* ) = ( dom <_ u. ran <_ ) |
7 | unidm | |- ( RR* u. RR* ) = RR* |
|
8 | 3 6 7 | 3eqtr2ri | |- RR* = U. U. <_ |