| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lefldiveq.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | lefldiveq.b |  |-  ( ph -> B e. RR+ ) | 
						
							| 3 |  | lefldiveq.c |  |-  ( ph -> C e. ( ( A - ( A mod B ) ) [,] A ) ) | 
						
							| 4 |  | moddiffl |  |-  ( ( A e. RR /\ B e. RR+ ) -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) | 
						
							| 5 | 1 2 4 | syl2anc |  |-  ( ph -> ( ( A - ( A mod B ) ) / B ) = ( |_ ` ( A / B ) ) ) | 
						
							| 6 | 1 2 | rerpdivcld |  |-  ( ph -> ( A / B ) e. RR ) | 
						
							| 7 | 6 | flcld |  |-  ( ph -> ( |_ ` ( A / B ) ) e. ZZ ) | 
						
							| 8 | 5 7 | eqeltrd |  |-  ( ph -> ( ( A - ( A mod B ) ) / B ) e. ZZ ) | 
						
							| 9 |  | flid |  |-  ( ( ( A - ( A mod B ) ) / B ) e. ZZ -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) = ( ( A - ( A mod B ) ) / B ) ) | 
						
							| 10 | 8 9 | syl |  |-  ( ph -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) = ( ( A - ( A mod B ) ) / B ) ) | 
						
							| 11 | 10 5 | eqtr2d |  |-  ( ph -> ( |_ ` ( A / B ) ) = ( |_ ` ( ( A - ( A mod B ) ) / B ) ) ) | 
						
							| 12 | 1 2 | modcld |  |-  ( ph -> ( A mod B ) e. RR ) | 
						
							| 13 | 1 12 | resubcld |  |-  ( ph -> ( A - ( A mod B ) ) e. RR ) | 
						
							| 14 | 13 2 | rerpdivcld |  |-  ( ph -> ( ( A - ( A mod B ) ) / B ) e. RR ) | 
						
							| 15 |  | iccssre |  |-  ( ( ( A - ( A mod B ) ) e. RR /\ A e. RR ) -> ( ( A - ( A mod B ) ) [,] A ) C_ RR ) | 
						
							| 16 | 13 1 15 | syl2anc |  |-  ( ph -> ( ( A - ( A mod B ) ) [,] A ) C_ RR ) | 
						
							| 17 | 16 3 | sseldd |  |-  ( ph -> C e. RR ) | 
						
							| 18 | 17 2 | rerpdivcld |  |-  ( ph -> ( C / B ) e. RR ) | 
						
							| 19 | 13 | rexrd |  |-  ( ph -> ( A - ( A mod B ) ) e. RR* ) | 
						
							| 20 | 1 | rexrd |  |-  ( ph -> A e. RR* ) | 
						
							| 21 |  | iccgelb |  |-  ( ( ( A - ( A mod B ) ) e. RR* /\ A e. RR* /\ C e. ( ( A - ( A mod B ) ) [,] A ) ) -> ( A - ( A mod B ) ) <_ C ) | 
						
							| 22 | 19 20 3 21 | syl3anc |  |-  ( ph -> ( A - ( A mod B ) ) <_ C ) | 
						
							| 23 | 13 17 2 22 | lediv1dd |  |-  ( ph -> ( ( A - ( A mod B ) ) / B ) <_ ( C / B ) ) | 
						
							| 24 |  | flwordi |  |-  ( ( ( ( A - ( A mod B ) ) / B ) e. RR /\ ( C / B ) e. RR /\ ( ( A - ( A mod B ) ) / B ) <_ ( C / B ) ) -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) <_ ( |_ ` ( C / B ) ) ) | 
						
							| 25 | 14 18 23 24 | syl3anc |  |-  ( ph -> ( |_ ` ( ( A - ( A mod B ) ) / B ) ) <_ ( |_ ` ( C / B ) ) ) | 
						
							| 26 | 11 25 | eqbrtrd |  |-  ( ph -> ( |_ ` ( A / B ) ) <_ ( |_ ` ( C / B ) ) ) | 
						
							| 27 |  | iccleub |  |-  ( ( ( A - ( A mod B ) ) e. RR* /\ A e. RR* /\ C e. ( ( A - ( A mod B ) ) [,] A ) ) -> C <_ A ) | 
						
							| 28 | 19 20 3 27 | syl3anc |  |-  ( ph -> C <_ A ) | 
						
							| 29 | 17 1 2 28 | lediv1dd |  |-  ( ph -> ( C / B ) <_ ( A / B ) ) | 
						
							| 30 |  | flwordi |  |-  ( ( ( C / B ) e. RR /\ ( A / B ) e. RR /\ ( C / B ) <_ ( A / B ) ) -> ( |_ ` ( C / B ) ) <_ ( |_ ` ( A / B ) ) ) | 
						
							| 31 | 18 6 29 30 | syl3anc |  |-  ( ph -> ( |_ ` ( C / B ) ) <_ ( |_ ` ( A / B ) ) ) | 
						
							| 32 |  | reflcl |  |-  ( ( A / B ) e. RR -> ( |_ ` ( A / B ) ) e. RR ) | 
						
							| 33 | 6 32 | syl |  |-  ( ph -> ( |_ ` ( A / B ) ) e. RR ) | 
						
							| 34 |  | reflcl |  |-  ( ( C / B ) e. RR -> ( |_ ` ( C / B ) ) e. RR ) | 
						
							| 35 | 18 34 | syl |  |-  ( ph -> ( |_ ` ( C / B ) ) e. RR ) | 
						
							| 36 | 33 35 | letri3d |  |-  ( ph -> ( ( |_ ` ( A / B ) ) = ( |_ ` ( C / B ) ) <-> ( ( |_ ` ( A / B ) ) <_ ( |_ ` ( C / B ) ) /\ ( |_ ` ( C / B ) ) <_ ( |_ ` ( A / B ) ) ) ) ) | 
						
							| 37 | 26 31 36 | mpbir2and |  |-  ( ph -> ( |_ ` ( A / B ) ) = ( |_ ` ( C / B ) ) ) |