Step |
Hyp |
Ref |
Expression |
1 |
|
legval.p |
|- P = ( Base ` G ) |
2 |
|
legval.d |
|- .- = ( dist ` G ) |
3 |
|
legval.i |
|- I = ( Itv ` G ) |
4 |
|
legval.l |
|- .<_ = ( leG ` G ) |
5 |
|
legval.g |
|- ( ph -> G e. TarskiG ) |
6 |
|
legid.a |
|- ( ph -> A e. P ) |
7 |
|
legid.b |
|- ( ph -> B e. P ) |
8 |
|
legtrd.c |
|- ( ph -> C e. P ) |
9 |
|
legtrd.d |
|- ( ph -> D e. P ) |
10 |
|
legbtwn.1 |
|- ( ph -> ( A e. ( C I B ) \/ B e. ( C I A ) ) ) |
11 |
|
legbtwn.2 |
|- ( ph -> ( C .- A ) .<_ ( C .- B ) ) |
12 |
|
simpr |
|- ( ( ph /\ A e. ( C I B ) ) -> A e. ( C I B ) ) |
13 |
5
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> G e. TarskiG ) |
14 |
6
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. P ) |
15 |
7
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. P ) |
16 |
8
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> C e. P ) |
17 |
|
simpr |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( C I A ) ) |
18 |
1 2 3 13 16 15 14 17
|
tgbtwncom |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( A I C ) ) |
19 |
1 2 3 13 15 16
|
tgbtwntriv1 |
|- ( ( ph /\ B e. ( C I A ) ) -> B e. ( B I C ) ) |
20 |
11
|
adantr |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C .- A ) .<_ ( C .- B ) ) |
21 |
1 2 3 4 13 16 15 14 17
|
btwnleg |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C .- B ) .<_ ( C .- A ) ) |
22 |
1 2 3 4 13 16 14 16 15 20 21
|
legtri3 |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C .- A ) = ( C .- B ) ) |
23 |
1 2 3 13 16 14 16 15 22
|
tgcgrcomlr |
|- ( ( ph /\ B e. ( C I A ) ) -> ( A .- C ) = ( B .- C ) ) |
24 |
|
eqidd |
|- ( ( ph /\ B e. ( C I A ) ) -> ( B .- C ) = ( B .- C ) ) |
25 |
1 2 3 13 14 15 16 15 15 16 18 19 23 24
|
tgcgrsub |
|- ( ( ph /\ B e. ( C I A ) ) -> ( A .- B ) = ( B .- B ) ) |
26 |
1 2 3 13 14 15 15 25
|
axtgcgrid |
|- ( ( ph /\ B e. ( C I A ) ) -> A = B ) |
27 |
26 17
|
eqeltrd |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. ( C I A ) ) |
28 |
26
|
oveq2d |
|- ( ( ph /\ B e. ( C I A ) ) -> ( C I A ) = ( C I B ) ) |
29 |
27 28
|
eleqtrd |
|- ( ( ph /\ B e. ( C I A ) ) -> A e. ( C I B ) ) |
30 |
12 29 10
|
mpjaodan |
|- ( ph -> A e. ( C I B ) ) |