Metamath Proof Explorer


Theorem legeq

Description: Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019)

Ref Expression
Hypotheses legval.p
|- P = ( Base ` G )
legval.d
|- .- = ( dist ` G )
legval.i
|- I = ( Itv ` G )
legval.l
|- .<_ = ( leG ` G )
legval.g
|- ( ph -> G e. TarskiG )
legid.a
|- ( ph -> A e. P )
legid.b
|- ( ph -> B e. P )
legtrd.c
|- ( ph -> C e. P )
legtrd.d
|- ( ph -> D e. P )
legeq.1
|- ( ph -> ( A .- B ) .<_ ( C .- C ) )
Assertion legeq
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 legval.p
 |-  P = ( Base ` G )
2 legval.d
 |-  .- = ( dist ` G )
3 legval.i
 |-  I = ( Itv ` G )
4 legval.l
 |-  .<_ = ( leG ` G )
5 legval.g
 |-  ( ph -> G e. TarskiG )
6 legid.a
 |-  ( ph -> A e. P )
7 legid.b
 |-  ( ph -> B e. P )
8 legtrd.c
 |-  ( ph -> C e. P )
9 legtrd.d
 |-  ( ph -> D e. P )
10 legeq.1
 |-  ( ph -> ( A .- B ) .<_ ( C .- C ) )
11 1 2 3 4 5 8 6 6 7 leg0
 |-  ( ph -> ( C .- C ) .<_ ( A .- B ) )
12 1 2 3 4 5 6 7 8 8 10 11 legtri3
 |-  ( ph -> ( A .- B ) = ( C .- C ) )
13 1 2 3 5 6 7 8 12 axtgcgrid
 |-  ( ph -> A = B )