Description: Deduce equality from "less than" null segments. (Contributed by Thierry Arnoux, 12-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | legval.p | |- P = ( Base ` G ) |
|
legval.d | |- .- = ( dist ` G ) |
||
legval.i | |- I = ( Itv ` G ) |
||
legval.l | |- .<_ = ( leG ` G ) |
||
legval.g | |- ( ph -> G e. TarskiG ) |
||
legid.a | |- ( ph -> A e. P ) |
||
legid.b | |- ( ph -> B e. P ) |
||
legtrd.c | |- ( ph -> C e. P ) |
||
legtrd.d | |- ( ph -> D e. P ) |
||
legeq.1 | |- ( ph -> ( A .- B ) .<_ ( C .- C ) ) |
||
Assertion | legeq | |- ( ph -> A = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | legval.p | |- P = ( Base ` G ) |
|
2 | legval.d | |- .- = ( dist ` G ) |
|
3 | legval.i | |- I = ( Itv ` G ) |
|
4 | legval.l | |- .<_ = ( leG ` G ) |
|
5 | legval.g | |- ( ph -> G e. TarskiG ) |
|
6 | legid.a | |- ( ph -> A e. P ) |
|
7 | legid.b | |- ( ph -> B e. P ) |
|
8 | legtrd.c | |- ( ph -> C e. P ) |
|
9 | legtrd.d | |- ( ph -> D e. P ) |
|
10 | legeq.1 | |- ( ph -> ( A .- B ) .<_ ( C .- C ) ) |
|
11 | 1 2 3 4 5 8 6 6 7 | leg0 | |- ( ph -> ( C .- C ) .<_ ( A .- B ) ) |
12 | 1 2 3 4 5 6 7 8 8 10 11 | legtri3 | |- ( ph -> ( A .- B ) = ( C .- C ) ) |
13 | 1 2 3 5 6 7 8 12 | axtgcgrid | |- ( ph -> A = B ) |