Metamath Proof Explorer


Theorem leibpilem1

Description: Lemma for leibpi . (Contributed by Mario Carneiro, 7-Apr-2015) (Proof shortened by Steven Nguyen, 23-Mar-2023)

Ref Expression
Assertion leibpilem1
|- ( ( N e. NN0 /\ ( -. N = 0 /\ -. 2 || N ) ) -> ( N e. NN /\ ( ( N - 1 ) / 2 ) e. NN0 ) )

Proof

Step Hyp Ref Expression
1 nn0onn
 |-  ( ( N e. NN0 /\ -. 2 || N ) -> N e. NN )
2 nn0oddm1d2
 |-  ( N e. NN0 -> ( -. 2 || N <-> ( ( N - 1 ) / 2 ) e. NN0 ) )
3 2 biimpa
 |-  ( ( N e. NN0 /\ -. 2 || N ) -> ( ( N - 1 ) / 2 ) e. NN0 )
4 1 3 jca
 |-  ( ( N e. NN0 /\ -. 2 || N ) -> ( N e. NN /\ ( ( N - 1 ) / 2 ) e. NN0 ) )
5 4 adantrl
 |-  ( ( N e. NN0 /\ ( -. N = 0 /\ -. 2 || N ) ) -> ( N e. NN /\ ( ( N - 1 ) / 2 ) e. NN0 ) )