Step |
Hyp |
Ref |
Expression |
1 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
2 |
|
0zd |
|- ( T. -> 0 e. ZZ ) |
3 |
|
oveq2 |
|- ( k = n -> ( -u 1 ^ k ) = ( -u 1 ^ n ) ) |
4 |
|
oveq2 |
|- ( k = n -> ( 2 x. k ) = ( 2 x. n ) ) |
5 |
4
|
oveq1d |
|- ( k = n -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. n ) + 1 ) ) |
6 |
3 5
|
oveq12d |
|- ( k = n -> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
7 |
|
eqid |
|- ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) = ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) |
8 |
|
ovex |
|- ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. _V |
9 |
6 7 8
|
fvmpt |
|- ( n e. NN0 -> ( ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ` n ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
10 |
9
|
adantl |
|- ( ( T. /\ n e. NN0 ) -> ( ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ` n ) = ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) ) |
11 |
|
neg1rr |
|- -u 1 e. RR |
12 |
|
reexpcl |
|- ( ( -u 1 e. RR /\ n e. NN0 ) -> ( -u 1 ^ n ) e. RR ) |
13 |
11 12
|
mpan |
|- ( n e. NN0 -> ( -u 1 ^ n ) e. RR ) |
14 |
|
2nn0 |
|- 2 e. NN0 |
15 |
|
nn0mulcl |
|- ( ( 2 e. NN0 /\ n e. NN0 ) -> ( 2 x. n ) e. NN0 ) |
16 |
14 15
|
mpan |
|- ( n e. NN0 -> ( 2 x. n ) e. NN0 ) |
17 |
|
nn0p1nn |
|- ( ( 2 x. n ) e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
18 |
16 17
|
syl |
|- ( n e. NN0 -> ( ( 2 x. n ) + 1 ) e. NN ) |
19 |
13 18
|
nndivred |
|- ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. RR ) |
20 |
19
|
recnd |
|- ( n e. NN0 -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
21 |
20
|
adantl |
|- ( ( T. /\ n e. NN0 ) -> ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) e. CC ) |
22 |
7
|
leibpi |
|- seq 0 ( + , ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ) ~~> ( _pi / 4 ) |
23 |
22
|
a1i |
|- ( T. -> seq 0 ( + , ( k e. NN0 |-> ( ( -u 1 ^ k ) / ( ( 2 x. k ) + 1 ) ) ) ) ~~> ( _pi / 4 ) ) |
24 |
1 2 10 21 23
|
isumclim |
|- ( T. -> sum_ n e. NN0 ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( _pi / 4 ) ) |
25 |
24
|
mptru |
|- sum_ n e. NN0 ( ( -u 1 ^ n ) / ( ( 2 x. n ) + 1 ) ) = ( _pi / 4 ) |