Metamath Proof Explorer


Theorem leidd

Description: 'Less than or equal to' is reflexive. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypothesis leidd.1
|- ( ph -> A e. RR )
Assertion leidd
|- ( ph -> A <_ A )

Proof

Step Hyp Ref Expression
1 leidd.1
 |-  ( ph -> A e. RR )
2 leid
 |-  ( A e. RR -> A <_ A )
3 1 2 syl
 |-  ( ph -> A <_ A )