Step |
Hyp |
Ref |
Expression |
1 |
|
ledi.1 |
|- A e. CH |
2 |
|
ledi.2 |
|- B e. CH |
3 |
|
ledi.3 |
|- C e. CH |
4 |
1 2
|
chub1i |
|- A C_ ( A vH B ) |
5 |
1 3
|
chub1i |
|- A C_ ( A vH C ) |
6 |
4 5
|
ssini |
|- A C_ ( ( A vH B ) i^i ( A vH C ) ) |
7 |
|
inss1 |
|- ( B i^i C ) C_ B |
8 |
2 1
|
chub2i |
|- B C_ ( A vH B ) |
9 |
7 8
|
sstri |
|- ( B i^i C ) C_ ( A vH B ) |
10 |
|
inss2 |
|- ( B i^i C ) C_ C |
11 |
3 1
|
chub2i |
|- C C_ ( A vH C ) |
12 |
10 11
|
sstri |
|- ( B i^i C ) C_ ( A vH C ) |
13 |
9 12
|
ssini |
|- ( B i^i C ) C_ ( ( A vH B ) i^i ( A vH C ) ) |
14 |
2 3
|
chincli |
|- ( B i^i C ) e. CH |
15 |
1 2
|
chjcli |
|- ( A vH B ) e. CH |
16 |
1 3
|
chjcli |
|- ( A vH C ) e. CH |
17 |
15 16
|
chincli |
|- ( ( A vH B ) i^i ( A vH C ) ) e. CH |
18 |
1 14 17
|
chlubi |
|- ( ( A C_ ( ( A vH B ) i^i ( A vH C ) ) /\ ( B i^i C ) C_ ( ( A vH B ) i^i ( A vH C ) ) ) <-> ( A vH ( B i^i C ) ) C_ ( ( A vH B ) i^i ( A vH C ) ) ) |
19 |
18
|
bicomi |
|- ( ( A vH ( B i^i C ) ) C_ ( ( A vH B ) i^i ( A vH C ) ) <-> ( A C_ ( ( A vH B ) i^i ( A vH C ) ) /\ ( B i^i C ) C_ ( ( A vH B ) i^i ( A vH C ) ) ) ) |
20 |
6 13 19
|
mpbir2an |
|- ( A vH ( B i^i C ) ) C_ ( ( A vH B ) i^i ( A vH C ) ) |